У=х³ - кубическая функция, графиком явл. кубическая парабола. Свойства функции: 1. Область определения D(х)=(-∞; +∞) 2. Область значения D(y)=(-∞; +∞) 3. f(-x)=(-x)³=-x³=-f(x) - значит функция нечетная 4. f'(x)=(x³)'=2x² 2x²≥0 при любых значениях х, а значит функция является возрастающей. 5. График функции проходит через начало координат х=0 у=0 т.(0;0) 6. График функции располагается в 1 и 4 четверти при х>0 y>0 и в 2 и 3 при x<0 y<0 7. График функции центрально-симметричен относительно точки перегиба, 8. График функции всегда пересекает линию абсцисс хотя бы в одной точке, 9. График функции не имеет общих точек со своей касательной в точке перегиба, кроме как в самой точке касания.
График квадратичной функции y=x2 является парабола. Свойства функции у=х2 1. Если х=0, то у=0, т.е. парабола имеет с осями координат общую точку (0;0) - начало координат 2. Если х≠0, то у>0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс. 3. Множеством значений функции у=х2 является промежуток [0; + ∞) 4. Противоположным значениям х соответствует одно и тоже значение у, т.е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у=х2 - четная). 5. На промежутке [0; + ∞) функция у=х2 возрастает 6. На промежутке (-∞; 0] функция у=х2 убывает 7. Наименьшее (нулевое) значение функция принимает в своей вершине, точке х=0. Наибольшего значения не существует. 8. График симметричен относительно оси Оу. Ось Оу является осью симметрии параболы.
встречи будет одинаковым поэтому просто t), теперь второй велосипедист у него скорость V2, а путь S2, но сказано что первый проехал на 6 км меньше, значит второй по отношению к пути первого велосипедиста проехал на 6 км больше!, отсюда S2=S1+6. Время за которое второй доехал до места встречи t=(S1+6)/V2. Теперь смотрим что происходило после встречи: первый проехал путь второго (а это S2=S1+6) за время 2 часа 24 мин (переводим в минуты 144 мин), значит 144=(S1+6)/V1. Второй в свою очередь проехал путь первого S1 за 1 час и 40 мин (это 100 мин), значит 100=S1/V2. Вот все условия записаны. Теперь из последних двух выражений выводим: V1=(S1+6)/144 и V2=S1/100. Эти данные подставляем в первые выражения и так как t у них одинаковое, то приравниваем их:S1/V1=(S1+6)/V2, подставляем V1 и V2: 144хS1/(S1+6)=100х(S1+6)/S1, из этого получаем 144хS1*2=100х(S1+6)*2, далее 12*2хS1*2=10*2х(S1+6)*2 избавляемся от квадратов получаем 12S1=10х(S1+6) отсюда 2S1=60, S1=30 км. Вот и ответ.
Свойства функции:
1. Область определения D(х)=(-∞; +∞)
2. Область значения D(y)=(-∞; +∞) 3. f(-x)=(-x)³=-x³=-f(x) - значит функция нечетная
4. f'(x)=(x³)'=2x² 2x²≥0 при любых значениях х, а значит функция является возрастающей.
5. График функции проходит через начало координат х=0 у=0 т.(0;0)
6. График функции располагается в 1 и 4 четверти при х>0 y>0 и в 2 и 3 при x<0 y<0 7. График функции центрально-симметричен относительно точки перегиба,
8. График функции всегда пересекает линию абсцисс хотя бы в одной точке,
9. График функции не имеет общих точек со своей касательной в точке перегиба, кроме как в самой точке касания.
График квадратичной функции y=x2 является парабола.
Свойства функции у=х2
1. Если х=0, то у=0, т.е. парабола имеет с осями координат общую точку (0;0) - начало координат
2. Если х≠0, то у>0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции у=х2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т.е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у=х2 - четная).
5. На промежутке [0; + ∞) функция у=х2 возрастает
6. На промежутке (-∞; 0] функция у=х2 убывает
7. Наименьшее (нулевое) значение функция принимает в своей вершине, точке х=0. Наибольшего значения не существует.
8. График симметричен относительно оси Оу. Ось Оу является осью симметрии параболы.