А) Тянем первый билет, с вероятностью 3/15 = 1/5 мы вытянем выигрышный билет. Значит, осталось 14 билетов, среди которых уже 2 выигрышных билета. Тянем второй раз, вероятность вытянуть выигрышный билет равна 2/14 = 1/7. Следовательно, вероятность два раза подряд вытащить выигрыш равна 1/5 * 1/7 = 1/35.
б) Здесь надо рассмотреть два случая.
В первый раз вытаскиваем выигрыш (вероятность 3/15=1/5), во второй раз - нет (вероятность 12/14=6/7). Вероятность такой ситуации 1/5 * 6/7 = 6/35.
И другой случай, сперва вытаскиваем билет без выигрыша (вероятность 12/15=4/5), а во второй раз с выигрышем (вероятность 3/14). Вероятность этой ситуации 4/5 * 3/14 = 12/70 = 6/35
Суммируем вероятности обоих случаев 6/35 + 6/35 = 12/35
в) В первый раз не вытянули билет с выигрышем (вероятность 12/15=4/5) и во второй раз (вероятность 11/14). Итоговая вероятность такого варианта развития событий - 4/5 * 11/14 = 22/35
Я в тебя верю, станешь пилотом!
А вот я для тебя решил
А) Тянем первый билет, с вероятностью 3/15 = 1/5 мы вытянем выигрышный билет. Значит, осталось 14 билетов, среди которых уже 2 выигрышных билета. Тянем второй раз, вероятность вытянуть выигрышный билет равна 2/14 = 1/7. Следовательно, вероятность два раза подряд вытащить выигрыш равна 1/5 * 1/7 = 1/35.
б) Здесь надо рассмотреть два случая.
В первый раз вытаскиваем выигрыш (вероятность 3/15=1/5), во второй раз - нет (вероятность 12/14=6/7). Вероятность такой ситуации 1/5 * 6/7 = 6/35.
И другой случай, сперва вытаскиваем билет без выигрыша (вероятность 12/15=4/5), а во второй раз с выигрышем (вероятность 3/14). Вероятность этой ситуации 4/5 * 3/14 = 12/70 = 6/35
Суммируем вероятности обоих случаев 6/35 + 6/35 = 12/35
в) В первый раз не вытянули билет с выигрышем (вероятность 12/15=4/5) и во второй раз (вероятность 11/14). Итоговая вероятность такого варианта развития событий - 4/5 * 11/14 = 22/35
1) Разность арифметической прогрессии: . Тогда по формуле n-го члена арифметической прогрессии, найдем четырнадцатый член:
2) Пятый член:
Сумма четырех первых членов геометрической прогрессии:
3) Знаменатель прогрессии:
Сумма бесконечно убывающей геометрической прогрессии:
4) Здесь в условии опечатка, скорее всего d=-0.5, а если так как есть то задача решения не имеет.
ответ: 7
5) - геометрическая прогрессии
6) 6; 12; .... ; 96; 102; 108; .... ;198 - последовательность чисел, кратных 6.
Посчитаем сколько таких чисел:
Сумма первых 33 членов а.п.:
Нам нужно найти сумму всех натуральных чисел превышающих 100 и меньших 200 , которые кратны 6
, значит найдем сумму не превышающих 100 и отнимем от суммы не превышающих 200
Искомая сумма: