В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Quartz11
Quartz11
20.03.2020 19:13 •  Алгебра

Найти значения параметра а при каждом из которых уравнение 2x^2+3x+a=0 имеет два различных отрицательных корня.

Показать ответ
Ответ:
withoutbrainn
withoutbrainn
25.05.2020 15:54

Понятно, что это квадратное уравнение. А когда квадратное уравнение будет иметь 2 различных отрицательных корня? Правильно, когда \sqrt{D}>-b, в данном случае b-коэффициент перед x.

Приступаем к решениею, приведем уравнение к приведенному(разделим на 2)

x^2+1,5x+0,5a=0

Найдём дискриминант

D=2,25-4*0,5a=2,25-2a

Т.к. в нашем уравнени b-отрицательное число (-1,5), то корню из дискриминанта достаточно принимать значения на промежутке

\sqrt{D}<1,5

Потому что, если корень из дискриминанта будет больше 1,5 , то корни получатся либо положительными, либо равными нулю, а этого нам не надо.

\sqrt{2,25-2a}<1,5

Возведем обе части в квадрат, чтобы избавиться от корня

2,25-2a<2,25

-2a<0

a>0

Значит, мы получим 2 различных отрицательных корня, если a>0.

 

 

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота