В решении.
Объяснение:
Решить систему неравенств:
1) (7,4х + 23)/21 <= 1 + 0,4x
3x - 5 <= (20x - 31)/7
Умножить обе части первого неравенства на 21, а второго на 7, чтобы избавиться от дробного выражения:
7,4х + 23 <= 21(1 + 0,4x)
7(3x - 5) <= 20x - 31
Раскрыть скобки:
7,4x + 23 <= 21 + 8,4x
21x - 35 <= 20x - 31
7,4x - 8,4x <= 21 - 23
21x - 20x <= -31 + 35
-x <= -2
x <= 4
x >= 2 (знак неравенства меняется при делении на -1)
Решение первого неравенства х∈[2; +∞);
Решение второго неравенства х∈(-∞; 4];
Решение системы неравенств [2; 4], пересечение.
Неравенства нестрогие, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.
Натуральные числа: 2; 3; 4 (2 и 4 входят в решения системы).
2) 1 - 2х <= (28 - 53x)/27
0,1x + 3 < (13 - 0,7x)/3
Умножить обе части первого неравенства на 27, а второго на 3, чтобы избавиться от дробного выражения:
27(1 - 2х) <= 28 - 53x
3(0,1x + 3) < 13 - 0,7x
27 - 54х <= 28 - 53x
0,3x + 9 < 13 - 0,7x
-54x + 53x <= 28 - 27
0,3x + 0,7x < 13 - 9
-x <= 1
x < 4
x >= -1 (знак неравенства меняется при делении на -1)
Решение первого неравенства х∈[-1; +∞);
Решение второго неравенства х∈(-∞; 4);
Решение системы неравенств [-1; 4), пересечение.
Первое неравенство нестрогое, скобка квадратная, второе - строгое, скобка круглая, а знаки бесконечности всегда с круглой скобкой.
Натуральные числа: 1; 2; 3 (4 не входит в решения системы).
В решении.
Объяснение:
Решить систему неравенств:
1) (7,4х + 23)/21 <= 1 + 0,4x
3x - 5 <= (20x - 31)/7
Умножить обе части первого неравенства на 21, а второго на 7, чтобы избавиться от дробного выражения:
7,4х + 23 <= 21(1 + 0,4x)
7(3x - 5) <= 20x - 31
Раскрыть скобки:
7,4x + 23 <= 21 + 8,4x
21x - 35 <= 20x - 31
7,4x - 8,4x <= 21 - 23
21x - 20x <= -31 + 35
-x <= -2
x <= 4
x >= 2 (знак неравенства меняется при делении на -1)
x <= 4
Решение первого неравенства х∈[2; +∞);
Решение второго неравенства х∈(-∞; 4];
Решение системы неравенств [2; 4], пересечение.
Неравенства нестрогие, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.
Натуральные числа: 2; 3; 4 (2 и 4 входят в решения системы).
2) 1 - 2х <= (28 - 53x)/27
0,1x + 3 < (13 - 0,7x)/3
Умножить обе части первого неравенства на 27, а второго на 3, чтобы избавиться от дробного выражения:
27(1 - 2х) <= 28 - 53x
3(0,1x + 3) < 13 - 0,7x
Раскрыть скобки:
27 - 54х <= 28 - 53x
0,3x + 9 < 13 - 0,7x
-54x + 53x <= 28 - 27
0,3x + 0,7x < 13 - 9
-x <= 1
x < 4
x >= -1 (знак неравенства меняется при делении на -1)
x < 4
Решение первого неравенства х∈[-1; +∞);
Решение второго неравенства х∈(-∞; 4);
Решение системы неравенств [-1; 4), пересечение.
Первое неравенство нестрогое, скобка квадратная, второе - строгое, скобка круглая, а знаки бесконечности всегда с круглой скобкой.
Натуральные числа: 1; 2; 3 (4 не входит в решения системы).
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .