В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
sdk2
sdk2
12.01.2021 17:16 •  Алгебра

найти условный экстремум функции методом множителей Лагранжа
z=1/x+1 /y
Условие:x+y=2

Показать ответ
Ответ:
Aneenanto
Aneenanto
15.10.2020 10:58

ответ: функция z имеет минимум, равный 2, в точке М(1;1).

Объяснение:

Пишем уравнение связи в виде g(x,y)=x+y-2=0 и составляем функцию Лагранжа L=z+a*g=1/x+1/y+a*(x+y-2), где a - множитель Лагранжа. Находим частные производные dL/dx и dL/dy: dL/dx=-1/x²+a, dL/dy=-1/y²*a и составляем систему из трёх уравнений:

-1/x²+a=0

-1/y²+a=0

a*(x+y-2)=0

Решая её, находим a=1, x=y=1. Таким образом, найдена единственная стационарная точка M(1;1). Теперь проверим, выполняется ли достаточное условие экстремума. Для этого находим вторые частные производные: d²L/dx²=2/x³; d²L/dxdy=0, d²L/dy²=2/y³ Вычисляем значение найденных производных в точке М: A=d²L/dx²(M)=2, B=d²L/dxdy(M)=0, C=d²L/dy²(M)=2 и составляем дифференциал 2-го порядка: d²L=A*(dx)²+2*B*dx*dy+C*(dy)²=2*dx²+2*dy²>0, поэтому функция z в точке М имеет минимум, равный zmin=1/1+1/1=2.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота