В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Blaxi
Blaxi
03.06.2020 05:38 •  Алгебра

Найти сумму первых пяти членов геометрической прогрессии 2; 1/2; 2/9; ...

Показать ответ
Ответ:
8548
8548
26.05.2022 12:51

абсцисса вершины параболы: m=-\dfrac{p}{2}. тогда ординату вершины параболы найдем, подставив абсциссу вершины параболы в график уравнения

y=\left(-\dfrac{p}{2}\right)^2+p\cdot \left(-\dfrac{p}{2}\right)+q=\dfrac{p^2}{4}-\dfrac{p^2}{2}+q=q-\dfrac{p^2}{4}

по условию, сумма координат вершины параболы равна 0,5. то есть

-\dfrac{p}{2}+q-\dfrac{p^2}{4}=\dfrac{1}{2}~~~\bigg|\cdot 4\\ \\ -2p+4q-p^2=2\\ \\ p^2+2p-4q+2=0

далее парабола пересекает ось ординат в точке с ординатой 0,25, то есть точка (0; 0.25) принадлежит параболе. подставим их координаты

q=\dfrac{1}{4}

p^2+2p-4\cdot \dfrac{1}{4}+2=0

p^2+2p+1=0\\ \\ (p+1)^2=0\\ \\ p=-1

отсюда абсцисса вершины параболы: m=-\dfrac{p}{2}=\dfrac{1}{2}

ответ: 0,5.

0,0(0 оценок)
Ответ:
Viktoria20040401
Viktoria20040401
21.03.2022 11:20

От имени Министерства спорта Российской Федерации и себя лично приветствую участников, организаторов и гостей Международного турнира по профессиональному боевому самбо «ПЛОТФОРМА S-70»!

Наш отечественный вид борьбы – самбо – давно признан во всём мире и продолжает активное развитие. Возникшая на его базе прикладная дисциплина – боевое самбо – является одним из наиболее захватывающих и зрелищных видов современных спортивных единоборств.

За последние четыре года турниры серии «LEAGUE S-70» стали одними из самых знаковых спортивных событий в нашей стране, к ним приковано внимание СМИ и многих поклонников единоборств. Отмечу, что турнир стал объединяющим фактором спортсменов России и ближнего зарубежья, так как, участвуя в нём, славную школу самбо проходят всё новые и новые поколения единоборцев из Украины, Казахстана, Болгарии и других зарубежных государств.

Уверен, турнир откроет новые имена талантливых спортсменов, подарит любителям самбо множество эмоций и незабываемые впечатления от яркого спортивного зрелища.

Желаю участникам Международного турнира «ПЛОТФОРМА S-70» удачи, успехов, захватывающих поединков и заслуженных побед!

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота