y=(x^3+x^2+16)/x
y'=((3x^2+2x)x-x^3-x^2-16)/x^2=(3x^3+2x^2-x^3-x^2-16)/x^2=(2x^3+x^2-16)/x^2=2x+1-16/x^2
y'=((3x^2+2x)x-x^3-x^2-16)/x^2
(3x^3+2x^2-x^3-x^2-16)/x^2
(2x^3+x^2-16)/x^2
2x+1-16/x^2
y=(x^3+x^2+16)/x
y'=((3x^2+2x)x-x^3-x^2-16)/x^2=(3x^3+2x^2-x^3-x^2-16)/x^2=(2x^3+x^2-16)/x^2=2x+1-16/x^2
y=(x^3+x^2+16)/x
y'=((3x^2+2x)x-x^3-x^2-16)/x^2
(3x^3+2x^2-x^3-x^2-16)/x^2
(2x^3+x^2-16)/x^2
2x+1-16/x^2