Сначало превращаем 63 34/35 в неправильную дробь. Что бы преобразовать необходимо целое тоесть 63 умножить на знаменатель- 35 и прибавить числитель- 34 , в числитель записываем число которое у нас получилось, а знаменатель остаётся тот же.
63•35+34/35= 2239/35
2. потом преобразовываем 5,4 в смешанное число, получается 5 целых 4 десятых
5 4/10 сокращаем тоесть 4 делим на 2 и 10 тоже делим на 2
5 4/10=5 2/5 и преобразовываем в неправильную дробь
(5•5+2/5) 5 2/5= 27/5
приводим 2239/35 и 27/5 к общему знаменателю,а то есть находим Нок 5 и 35 . Нок это 35 , таким образом мы 2239/35 оставляем так же, а 27/5 и числитель и знаменатель умножаем на 7( умножаем на 7 потому что, чтобы получилось 35 надо 5 умножить именно на 7)
(27•5 / 5•5) получается 2239/35+189/35 складываем только числители
2428/35
Объяснение:
Сначало превращаем 63 34/35 в неправильную дробь. Что бы преобразовать необходимо целое тоесть 63 умножить на знаменатель- 35 и прибавить числитель- 34 , в числитель записываем число которое у нас получилось, а знаменатель остаётся тот же.63•35+34/35= 2239/35
2. потом преобразовываем 5,4 в смешанное число, получается 5 целых 4 десятых
5 4/10 сокращаем тоесть 4 делим на 2 и 10 тоже делим на 2
5 4/10=5 2/5 и преобразовываем в неправильную дробь
(5•5+2/5) 5 2/5= 27/5
приводим 2239/35 и 27/5 к общему знаменателю,а то есть находим Нок 5 и 35 . Нок это 35 , таким образом мы 2239/35 оставляем так же, а 27/5 и числитель и знаменатель умножаем на 7( умножаем на 7 потому что, чтобы получилось 35 надо 5 умножить именно на 7)(27•5 / 5•5) получается 2239/35+189/35 складываем только числители
2239/35+189/35=2428/35
Коротко:63 34/35+ 5,4 = 2239/35+5 4/10= 2239/35+5 2/5=
2239/35+27/5 = 2239/35+189/35= 2428/35
1
Пример 1. 2sin(3x - p/4) -1 = 0.
Решение. Решим уравнение относительно sin(3x - p/4).
sin(3x - p/4) = 1/2, отсюда по формуле решения уравнения sinx = а находим
3х - p/4 = (-1)n arcsin 1/2 + np, nÎZ.
Зх - p/4 = (-1)n p/6 + np, nÎZ; 3x = (-1)n p/6 + p/4 + np, nÎZ;
x = (-1)n p/18 + p/12 + np/3, nÎZ
Если k = 2n (четное), то х = p/18 + p/12 + 2pn/3, nÎZ.
Если k = 2n + 1 (нечетное число), то х = - p/18 + p/12 + ((2pn + 1)p)/3 =
= p/36 + p/3 + 2pn/3 = 13p/36 + 2pn/3, nÎz.
ответ: х1 = 5p/6 + 2pn/3,nÎZ, x2 = 13p/36 + 2pn/3, nÎZ,
или в градусах: х, = 25° + 120 · n, nÎZ; x, = 65° + 120°· n, nÎZ.
Пример 2. sinx + Öз cosx = 1.
Решение. Подставим вместо Öз значение ctg p/6, тогда уравнение примет вид
sinx + ctg p/6 cosx = 1; sinx + (cosp/6)/sinp/6 · cosx = 1;
sinx sin p/6 + cos p/6 cosx = sin p/6; cos(x - p/6) = 1/2.
По формуле для уравнения cosx = а находим
х - p/6 = ± arccos 1/2 + 2pn, nÎZ; x = ± p/3 + p/6 + 2pn, nÎZ;
x1 = p/3 + p/6 + 2pn, nÎZ; x1 = p/2 + 2pn, nÎZ;
x2 = - p/3 + p/6 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ;
ответ: x1 = p/2 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ.