В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
DalinStreeet
DalinStreeet
21.11.2020 02:40 •  Алгебра

Найти наибольшее и наименьшее значение функции y=x+4/на корень из х на отрезке [1; 9]

Показать ответ
Ответ:
Tosya03
Tosya03
06.07.2020 23:46
y= \frac{x+4}{ \sqrt{x} }
y(1)= \frac{1+4}{ \sqrt{1} } =5
y(9)= \frac{9+4}{ \sqrt{9} }= \frac{13}{3} =4 \frac{1}{3}
y'= \frac{(x+4)'* \sqrt{x} -(x+4)*( \sqrt{x} )'}{ ( \sqrt{x} )^{2} }
y'= \frac{ \sqrt{x} -(x+4)* \frac{1}{2 \sqrt{x} } }{x }
\frac{ \sqrt{x} -(x+4)* \frac{1}{2 \sqrt{x} } }{x } =0
\sqrt{x} -(x+4)* \frac{1}{2 \sqrt{x} } =0
2x-x-4=0
x=4
y(4)= \frac{4+4}{ \sqrt{4} } =4
y_{min} =y(4)=4
y_{max} =y(1)=5
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота