В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
bashatsn
bashatsn
22.03.2023 17:43 •  Алгебра

Найдите вторую производную функции y=е^(x^2 ) и вычислите y^'' (0).

Показать ответ
Ответ:
PavelSvyatelik2017
PavelSvyatelik2017
09.10.2020 20:02

y=e^{x^2}\\ \\y'=2x*e^{x^2}\\ \\ y''=(2x)'*e^{x^2}+2x*(e^{x^2})'=2e^{x^2}+4x^2e^{x^2}\\ \\y''(0)=2e^{0^2}+4x^0e^{0^2}=2+4=6


Тут ничего сложного нету. Для начала нужно заметить, что функция сложенная. Для начала нам нужно было найти производную от x²=2x. Затем уже найти всю производную e^(x²)=e^(x²). Что бы найти вторую производную достаточно вспомнить правило нахождения производной.

(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота