План действий : 1) ищем производную; 2) приравниваем её к нулю и решаем получившееся уравнение ( ищем критические точки); 3) ставим найденные числа на числовой прямой и проверяем знаки производной на каждом промежутке; 4) пишем ответ. Поехали? 1) у' = -2x +2 2) -2x +2 = 0 -2x = -2 x = 1 3) -∞ 1 +∞ + - 4) ответ: при х ∈ (-∞; 1) функция возрастает при х ∈ (1; +∞( функция убывает
я тут уже решал подобную задачу столько раз, что не помню, когда был первый.
Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Еще вариант решения, по сути - такой же
Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.
z+x+y = b;
z+(13-x)+(15-y) = a;
(a + b)/2 = 21
Складываем и делим на 2.
z = 7
Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :)))
2) приравниваем её к нулю и решаем получившееся уравнение ( ищем критические точки);
3) ставим найденные числа на числовой прямой и проверяем знаки производной на каждом промежутке;
4) пишем ответ.
Поехали?
1) у' = -2x +2
2) -2x +2 = 0
-2x = -2
x = 1
3) -∞ 1 +∞
+ -
4) ответ: при х ∈ (-∞; 1) функция возрастает
при х ∈ (1; +∞( функция убывает
я тут уже решал подобную задачу столько раз, что не помню, когда был первый.
Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Еще вариант решения, по сути - такой же
Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.
z+x+y = b;
z+(13-x)+(15-y) = a;
(a + b)/2 = 21
Складываем и делим на 2.
z = 7
Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :)))