Вообще, в случае, когда в одной из частей уравнения произведение четного числа линейных множителей, один из стандартных методов - перемножить их попарно так, чтобы получить трехчлены, отличающиеся только свободным членом, после чего один из них заменяется на переменную. Здесь похожая ситуация: надо перемножить 1 скобку с 4, и 2 с 3:
Дальше, видно, что 10 - это удвоенное 5, т.е. коэффициент при корне из 7 в икс-квадрат, значит, корень из семи в каждом из трехчленов должен сократиться. Посчитаем отдельно x^2-10x как разность квадратов:
Подставить -18 в произведение двух трехчленов несложно, действительно получается -6.
Число 59 по условию это число равно: 5х+4=6у+5 5х-6у=5-4 5х-6у=1 5х=6у+1 5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6 Подбираем числа делящиеся на 5: 15=14+1, не подходит, т. к.14 не делится на 6 25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно. 30=29+1 - нет 35=34+1 - нет 40= 39+1- нет 45= 44+1 - нет 50= 49+1 - нет 55=54+1 - да. Тогда задуманное число 55+4=59. 59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
Дальше, видно, что 10 - это удвоенное 5, т.е. коэффициент при корне из 7 в икс-квадрат, значит, корень из семи в каждом из трехчленов должен сократиться. Посчитаем отдельно x^2-10x как разность квадратов:
Подставить -18 в произведение двух трехчленов несложно, действительно получается -6.
по условию это число равно:
5х+4=6у+5
5х-6у=5-4
5х-6у=1
5х=6у+1
5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6
Подбираем числа делящиеся на 5:
15=14+1, не подходит, т. к.14 не делится на 6
25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно.
30=29+1 - нет
35=34+1 - нет
40= 39+1- нет
45= 44+1 - нет
50= 49+1 - нет
55=54+1 - да.
Тогда задуманное число 55+4=59.
59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.