мы можем записать это дробью, чтобы было легче вычислять.
при одинаковых основаниях (одинаковых больших буквах или цифрах) мы можем сложить степени, если мы перемножаем числа. также можем вычитать их, если числа делим, то бишь 14+9=23. получилось . теперь мы имеем такую дробь: . дробную черту можно заменить делением, а значит степени можно вычесть. не пугайтесь, что мы вычитаем из большего меньшее. теперь мы имеем следующее: . минусовую степень мы переворачиваем, получаем обыкновенную дробь. в числитель ставим единицу, а вниз - число в степени: . дальше всё просто: подставляем число и решаем.
1° = pi/180 радиан ~ 0,017453293 радиан
1° = 1/360 оборота ~ 0,002777 оборота
1° = 400/360 градов ~ 1,111111 градов
Соотношение радиана с другими единицами измерения углов описывается формулой:
* 1 радиан = 1/2π оборотов = 180/π градусов = 200/π градов
Очевидно, 180° = π. Отсюда вытекает тривиальная формула пересчёта из градусов, минут и секунд в радианы и наоборот.
α[рад] = (π / 180) × α[°]
α[°] = (180 / π) × α[рад]
где: α[рад] — угол в радианах, α[°] — угол в градусах
1 рад ≈ 57,295779513° ≈ 57°17′44,806″
мы можем записать это дробью, чтобы было легче вычислять.
при одинаковых основаниях (одинаковых больших буквах или цифрах) мы можем сложить степени, если мы перемножаем числа. также можем вычитать их, если числа делим, то бишь 14+9=23. получилось . теперь мы имеем такую дробь: . дробную черту можно заменить делением, а значит степени можно вычесть. не пугайтесь, что мы вычитаем из большего меньшее. теперь мы имеем следующее: . минусовую степень мы переворачиваем, получаем обыкновенную дробь. в числитель ставим единицу, а вниз - число в степени: . дальше всё просто: подставляем число и решаем.