Y=5/√ (x-5) √ (x-5) ≠0 (x-5) >0 x>5
x ∈ (5; + ∞)
(5 ; ∞)
Объяснение: Выражение √(х - 5) ≠ 0 , так как делить на 0 нельзя!
Подкоренное выражение не может быть отрицательным. Тогда областью определения будет решение системы неравенств:
√(х - 5) ≠ 0 и х - 5 ≥ 0 (записать как обычную систему с фигурной скобки).
⇔ х - 5 ≠ 0 и х - 5 ≥ 0 ⇔ х = 5 > 0 ⇔ x > 5.
x ∈ (5 ; ∞)
Y=5/√ (x-5) √ (x-5) ≠0 (x-5) >0 x>5
x ∈ (5; + ∞)
(5 ; ∞)
Объяснение: Выражение √(х - 5) ≠ 0 , так как делить на 0 нельзя!
Подкоренное выражение не может быть отрицательным. Тогда областью определения будет решение системы неравенств:
√(х - 5) ≠ 0 и х - 5 ≥ 0 (записать как обычную систему с фигурной скобки).
⇔ х - 5 ≠ 0 и х - 5 ≥ 0 ⇔ х = 5 > 0 ⇔ x > 5.
x ∈ (5 ; ∞)