Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Если а и b натуральные, то их сумма больше либо равна 2, а 3a-b принимает целые значения. Произведение натурального на целое даст 6 только если это целое положительно, значит 3а-b тоже натуральное число. Воможны лишь три варианта произведения, которые дадут шесть (четвертый невозможен, т.к. a+b>=2): 1) a+b=2, 3a-b=3. Сложив эти уравнения получим, что 4а=5; a=5/4 - не натуральное число. 2) a+b=3; 3a-b=2. Складываем, и опять 4а=5 - не подходит. 3) a+b=6;3a-b=1. Складываем, 4а=7; a=7/4 - не натуральное. Значит, подходящих натуральных а и b нет.
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68