Каждая буква слова Кенгуру заменена одной из цифр 1,2,3,4,5,6. У 5-ая и 7-ая буква в слове кенгуру. Получившееся число не делится на 2, значит последняя цифра должна быть нечетным числом. Это может быть: 1, 3, 5. Получившееся число делится на 3: значит сумма чисел должна быть кратной 3. Подставим вместо У число 1 (другие числа могут идти в любом порядке): КЕНГУРУ=2345161, сумма чисел = 22 - не кратно 3 (22:3=7 целых 1 в остатке). Значит, У ≠1
Подставим вместо У число 3 (другие числа могут идти в любом порядке): КЕНГУРУ=1245363, сумма чисел = 24 - кратно 3 (24:3=8). Цифра 3 подходит под условия задачи. У=3
Подставим вместо У число 5 (другие числа могут идти в любом порядке): КЕНГУРУ=1234565, сумма чисел = 26 - не кратно 3 (26:3=8 целых 2 в остатке). Значит, У≠5.
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
У 5-ая и 7-ая буква в слове кенгуру.
Получившееся число не делится на 2, значит последняя цифра должна быть нечетным числом. Это может быть: 1, 3, 5.
Получившееся число делится на 3: значит сумма чисел должна быть кратной 3.
Подставим вместо У число 1 (другие числа могут идти в любом порядке):
КЕНГУРУ=2345161, сумма чисел = 22 - не кратно 3 (22:3=7 целых 1 в остатке). Значит, У ≠1
Подставим вместо У число 3 (другие числа могут идти в любом порядке):
КЕНГУРУ=1245363, сумма чисел = 24 - кратно 3 (24:3=8). Цифра 3 подходит под условия задачи. У=3
Подставим вместо У число 5 (другие числа могут идти в любом порядке):
КЕНГУРУ=1234565, сумма чисел = 26 - не кратно 3 (26:3=8 целых 2 в остатке). Значит, У≠5.
ОТВЕТ: У=3
Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41