если x1 больший корень а x2 меньший то x1=5x2
по теореме Виета
x1x2=c/a
x1+x2=-b/a
тогда решаем системой
5x2*x2=(49a^2-7a)/1
5x2+x2=(-(-(14a-1))/1 ⇒
5x2^2=49a^2-7a
6x2=14a-1 ⇒ x2=(14a-1)/6
5((14a-1)/6)^2=49a^2-7a
5((196a^2-28a+1)/36)=49a^2-7a
5(196a^2-28a+1)=36(49a^2-7a)
980a^2-140a+5=1764a^2-252a
784a^2-112a-5=0
D=(-112)^2-4*784*(-5)=12544+15680=28224=168^2
a1=(-(-112)-168)/(2*784)=(112-168)/1568=-56/1568=-1/28
a2=(-(-112)+168)/(2*784)=(112+168)/1568=280/1568=5/28
p=m/n
n=90 ( количество двузначных чисел)
Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=12
d=15-12=3
99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a₁=10
d=15-10=5
95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90
m=30+20-6=44
p=44/90=22/45
если x1 больший корень а x2 меньший то x1=5x2
по теореме Виета
x1x2=c/a
x1+x2=-b/a
тогда решаем системой
5x2*x2=(49a^2-7a)/1
5x2+x2=(-(-(14a-1))/1 ⇒
5x2^2=49a^2-7a
6x2=14a-1 ⇒ x2=(14a-1)/6
5((14a-1)/6)^2=49a^2-7a
5((196a^2-28a+1)/36)=49a^2-7a
5(196a^2-28a+1)=36(49a^2-7a)
980a^2-140a+5=1764a^2-252a
784a^2-112a-5=0
D=(-112)^2-4*784*(-5)=12544+15680=28224=168^2
a1=(-(-112)-168)/(2*784)=(112-168)/1568=-56/1568=-1/28
a2=(-(-112)+168)/(2*784)=(112+168)/1568=280/1568=5/28