Решение: Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет: х/16*100% При добавлении олова, масса сплава стала равной: 16+2=18(кг) а содержание олова в новом сплаве составило: (х+2) кг процентное содержание олова в новом сплаве равно: (х+2)/18*100% А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение: (х+2)/18*100% - х/16*100%=5% 100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144 8*100*(х+2) - 9*100*х=144*5 800х+1600 -900х=720 -100х=720-1600 -100х=-880 х=-880 : -100 х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг
пустьвся работа равна 1, х часов работает один первый экскаватор, тогда второй работает один х-4 часов, производительность первого экскаватора 1/х, а производительность второго 1/(х-4), вместе они выполнят всю работу за 3 часа 45 минут или 15/4 часа. первый выполнит 15/4*(1/х)=15/(4*х) часть всей работы, а второй выполнит 15/4*(1/(х-4))=15/(4*х*(х-4)) часть работы, а вместе они выполнят всю работу, которая равна 1. получаем уравнение:
15/(4*х)+15/(4*х*(х-4))=1 после преобразований получим уравнение
15*(х-4)+15*х=4*х*(х-4)
15х-60+15х=4х²-16х
4х²-46х+60=0
2х²-23х+30=0
D=23²-4*2*30=529-240=289=17²
х₁=-((-23)+17)/(2*2)=6/4 - не удовлетворяет условию задачи
Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет:
х/16*100%
При добавлении олова, масса сплава стала равной:
16+2=18(кг)
а содержание олова в новом сплаве составило:
(х+2) кг
процентное содержание олова в новом сплаве равно:
(х+2)/18*100%
А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение:
(х+2)/18*100% - х/16*100%=5%
100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144
8*100*(х+2) - 9*100*х=144*5
800х+1600 -900х=720
-100х=720-1600
-100х=-880
х=-880 : -100
х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг
пустьвся работа равна 1, х часов работает один первый экскаватор, тогда второй работает один х-4 часов, производительность первого экскаватора 1/х, а производительность второго 1/(х-4), вместе они выполнят всю работу за 3 часа 45 минут или 15/4 часа. первый выполнит 15/4*(1/х)=15/(4*х) часть всей работы, а второй выполнит 15/4*(1/(х-4))=15/(4*х*(х-4)) часть работы, а вместе они выполнят всю работу, которая равна 1. получаем уравнение:
15/(4*х)+15/(4*х*(х-4))=1 после преобразований получим уравнение
15*(х-4)+15*х=4*х*(х-4)
15х-60+15х=4х²-16х
4х²-46х+60=0
2х²-23х+30=0
D=23²-4*2*30=529-240=289=17²
х₁=-((-23)+17)/(2*2)=6/4 - не удовлетворяет условию задачи
х₂=-(-23-17)/(2*2)=40/4=10
10ч - выполнит всю работу первый экскаватор,
10-4=6ч - выполнит всю работу второй экскаватор
ответ: 10ч и 6ч