Пусть собственная скорость равна х км/ч, тогда скорость против течения равна (x-1) км/ч, а по течению — (x+1) км/ч. Время, затраченное против течения, равно 6/(x-1) ч, а по течению — 6/(x+1) ч. На весь путь байдарка затратила 6/(x-1) + 6/(x+1) ч, что по условию составляет 4ч30мин.
4 ч 30 мин = 4 ч+ 30/60ч = 4,5 ч.
Составим и решим уравнение:
Для простоты умножим обе части уравнения на 2(x-1)(x+1)≠0
ответ: 3 км/ч
Пошаговое решение:
Пусть собственная скорость равна х км/ч, тогда скорость против течения равна (x-1) км/ч, а по течению — (x+1) км/ч. Время, затраченное против течения, равно 6/(x-1) ч, а по течению — 6/(x+1) ч. На весь путь байдарка затратила 6/(x-1) + 6/(x+1) ч, что по условию составляет 4ч30мин.
4 ч 30 мин = 4 ч+ 30/60ч = 4,5 ч.
Составим и решим уравнение:
Для простоты умножим обе части уравнения на 2(x-1)(x+1)≠0
- не удовлетворяет условию
Собственная скорость байдарки составляет 3 км/ч.
Объяснение:
А1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.