Обозначим скорость вела v км/мин, мото w км/мин.
В момент встречи происходит одновременно два события:
1) Они вдвоем проехали весь путь за 28 минут.
S = 28(v + w)
2) Они потратили одинаковое t = 28 мин каждый на свою часть пути.
Кроме того, нам известно, что весь путь S км мотоциклист проехал на 42 мин быстрее, чем велосипедист.
S/v - S/w = 42
S*(1/v - 1/w) = 42
28(v + w)*(w - v)/(vw) = 42
2(w^2 - v^2) = 3wv
2w^2 - 3wv - 2v^2 = 0
Делим все на v^2
2(w/v)^2 - 3(w/v) - 2 = 0
Квадратное уравнение относительно w/v
D = (-3)^2 - 4*2(-2) = 9 + 16 = 25 = 5^2
(w/v)1 = (3 - 5)/4 = -2/4 < 0 - не подходит
(w/v)2 = (3 + 5)/4 = 8/4 = 2
w = 2v
S = 28*(v + w) = 28(v + 2v) = 28*3v = 84v
Значит, велосипедист приехал за 84 минуты, то есть 1 час 24 мин.
Переведем это число в часы
t = 1 24/60 = 1 4/10 = 1,4 часа.
ответ: 1,4 часа.
Обозначим скорость вела v км/мин, мото w км/мин.
В момент встречи происходит одновременно два события:
1) Они вдвоем проехали весь путь за 28 минут.
S = 28(v + w)
2) Они потратили одинаковое t = 28 мин каждый на свою часть пути.
Кроме того, нам известно, что весь путь S км мотоциклист проехал на 42 мин быстрее, чем велосипедист.
S/v - S/w = 42
S*(1/v - 1/w) = 42
28(v + w)*(w - v)/(vw) = 42
2(w^2 - v^2) = 3wv
2w^2 - 3wv - 2v^2 = 0
Делим все на v^2
2(w/v)^2 - 3(w/v) - 2 = 0
Квадратное уравнение относительно w/v
D = (-3)^2 - 4*2(-2) = 9 + 16 = 25 = 5^2
(w/v)1 = (3 - 5)/4 = -2/4 < 0 - не подходит
(w/v)2 = (3 + 5)/4 = 8/4 = 2
w = 2v
S = 28*(v + w) = 28(v + 2v) = 28*3v = 84v
Значит, велосипедист приехал за 84 минуты, то есть 1 час 24 мин.
Переведем это число в часы
t = 1 24/60 = 1 4/10 = 1,4 часа.
ответ: 1,4 часа.
sinα + sinβ = 2 * sin * cos
α = x + 30
β = x - 30
sin (x + 30) + sin (x - 30) = 2 * sin * cos = 2 √ (3cosx)
2 * sin * cos = 2 √(3cosx)
2 * sin x * cos 30 = 2 √(3cosx)
2 * √3/2 * cosx = 2 √(3cosx)
√3 * sinx = 2 √(3cosx)
(√3 * sinx)² = (2 √(3cosx))²
3 * sin ² x = 4 * 3 * cosx
sin²x = 1 - cos²x
3 * (1 - cos²x) = 4 * 3 * cosx
1 - cos²x = 4 *cosx
cos²x + 4cosx - 1 = 0
cosx = t
t² + 4 t - 1 = 0
D = 16 - 4 * 1 * (- 1) = 16 + 4 = 20
t ₁ = (- 4 - √20)/2 = (- 4 - 2√5)/2 = - 2 - √5
t₂ = (- 4 + √20)/2 = (- 4 + 2√5)/2 = - 2 + √5
cosx = - 2 - √5 < - 1 не удовлетворяет, т.к. значения -1 ≤ cosх ≤ 1
cos x = - 2 + √5 < 1 удовлетворяет
Используем формулу
1 + tg²x =
tg²x = - 1
tg²x = - 1 = -1 = = = = = 8 + 4√5
tg²x = 8 + 4√5 = 4 (2 + √5)
tgx = 2√(2 + √5)
tgx = - 2√(2 + √5)