Условные обозначения: <= -меньше либо равно >= - больше либо равно Pi - число Пи
-1 <= cos(3x)<=1 Решаем систему: cos(3x)<=1, cos(3x)>=-1; Косинус равен единице при 2*Pi*n, n=0, +1, -1, +2, -2, .. Косинус равен минус единице при Pi + 2*Pi*n, n=0, +1, -1, +2, -2, .. Система примет вид: 3x <= 2*Pi*n, 3x >= Pi + 2*Pi*n; Итого, что касается косинуса: x <= (2/3)*Pi*n, x>=(Pi/3) + (2/3)*Pi*n,
Если смотреть по оси X, то график самого косинуса у тебя будет определен на кусочках, отмеченных 00. На отрицательной оси тоже такие же кусочки будут. По Y график на этих интервалах будет ограничен -1 снизу и 1 сверху.
Условные обозначения:
<= -меньше либо равно
>= - больше либо равно
Pi - число Пи
-1 <= cos(3x)<=1
Решаем систему:
cos(3x)<=1,
cos(3x)>=-1;
Косинус равен единице при 2*Pi*n, n=0, +1, -1, +2, -2, ..
Косинус равен минус единице при Pi + 2*Pi*n, n=0, +1, -1, +2, -2, ..
Система примет вид:
3x <= 2*Pi*n,
3x >= Pi + 2*Pi*n;
Итого, что касается косинуса:
x <= (2/3)*Pi*n,
x>=(Pi/3) + (2/3)*Pi*n,
Если смотреть по оси X, то график самого косинуса у тебя будет определен на кусочках, отмеченных 00. На отрицательной оси тоже такие же кусочки будут. По Y график на этих интервалах будет ограничен -1 снизу и 1 сверху.
... 0000
(2/3)*Pi(Pi/3) + (2/3)*Pi (4/3)*Pi (2*Pi)/3 + (4/3)*Pi
n=1.n=2
График всей функции будет поднят по оси Y на 2
6sinx/2cosx/2+4cos²x/2-4sin²x/2-2sin²x/2-2cos²x/2=0
6sin²x/2-6sinx/2cosx/2-2cos²x/2=0/2cos²x/2
3tg²x/2-3tgx/2-1=0
tgx/2=a
3a²-3a-1=0
D=9+12=21
a1=(3-√21)/6⇒tgx/2=(3-√21)/6⇒x/2=arctg(3-√21)/2+πn⇒x=2arctg(3-√21)/2+2πn,n∈z
a2=(3+√21)/6⇒tgx/2=(3+√21)/6⇒x/2=arctg(3+√21)/2+πn⇒x=2arctg(3+√21)/2+2πn,n∈z
2) 2 sin² x/4 + 5 cos x/2 = 4
2(1-cosx/2)/2+5 cos x/2 = 4
1-cosx/2+5 cos x/2 = 4
4cosx/2=3
cosx/2=3/4
x/2=+-arccos0,75+2πn,π∈z
x=+-2arccos0,75+4πn,π∈z
3) 5 - 4 cos² 3x = 4sin3x
5-4+4sin²3x-4sin3x=0
4sin²3x-4sin3x+1=0
(2sin3x-1)²=0
2sin3x=1
sin3x=1/2
3x=(-1)^n*π/6+πn,n∈z
x=(-1)^n*π/18+πn/3,n∈z