В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
thisisfatal
thisisfatal
12.01.2023 01:33 •  Алгебра

на двох полицях стояло порівну книжок. потім третину книжок з першої полиці переставили на другу. у скільки разів на другій полиці стало більше книжок, ніж на першій?​

Показать ответ
Ответ:
лейла1102
лейла1102
12.05.2023 22:09
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .
0,0(0 оценок)
Ответ:
1АндрейKEK
1АндрейKEK
05.03.2023 04:00

Объяснение:

z = 1/(2x^2) + 1/(2y^2), при условии 1/x^4 + 1/y^4 = 2

Выразим y через x

1/y^4 = 2 - 1/x^4 = (2x^4 - 1)/x^4

1/(2y^2) = √(2x^4 - 1)/(2x^2)

Область определения: x ≠ 0; y ≠ 0; x^4 > 1/2; |x| > 1/(кор. 4 ст. из 2) ≈ 0,84

В функцию z входит 1/(2y^2), поэтому я так и написал.

z = 1/(2x^2) + 1/(2y^2) = 1/(2x^2) + √(2x^4 - 1)/(2x^2) = (√(2x^4 - 1) + 1) / (2x^2)

Теперь находим производную функции уже одной переменной.

z ' = [8x^3/(2√(2x^4 - 1))*2x^2 - 4x(√(2x^4 - 1) + 1) ] / (4x^4) =

= [2x^4/√(2x^4 - 1) - √(2x^4 - 1) - 1] / x^3

В точке экстремума производная, то есть ее числитель, равна 0.

2x^4/√(2x^4 - 1) - √(2x^4 - 1) - 1 = 0

(2x^4 - (2x^4 - 1)) / √(2x^4 - 1) = 1

1/√(2x^4 - 1) = 1

√(2x^4 - 1) = 1

2x^4 - 1 = 1

2x^4 = 2

x^4 = 1

x1 = -1; x2 = 1;

y^4 = x^4/(2x^4 - 1) = 1/(2-1) = 1; y1 = -1; y2 = 1.

z = 1/(2x^2) + 1/(2y^2) = 1/(2*1) + 1/(2*1) = 1

Критические точки: (-1; -1; 1); (-1; 1; 1); (1; -1; 1); (1; 1; 1).

При x = -2 < -1 будет

z ' = (2*16/√15 - √15 - 1) / (-8) ≈ 3,4/(-8) < 0

Функция падает.

При x = -0,9 € (-1; -1/(кор. 4 ст из 2) ) будет

z ' = (2*0,9^4/√(2*0,9^4-1) - √(2*0,9^4-1) - 1) / (-0,9)^3 =

= (1,3122/√0,3122 - √0,3122 - 1) / (-0,729) ≈ 0,8/(-0,73) < 0

Функция падает.

При x < -1 функция падает и при x > -1 функция тоже падает.

Значит, x = -1 - это критическая точка, но не экстремум.

Тоже самое с x = 1.

При x € (1/кор. 4 ст из 2); 1) функция растет, и при x > 1 функция тоже растет.

Поэтому у этой функции экстремумов нет.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота