В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ольга2104
ольга2104
01.12.2021 19:47 •  Алгебра

На базі відпочинку знаходиться 70 чоловік. З них 27 займаються в драматичному гуртку, 32 співають у хорі, 20 захоплюються спортом. Драмгурток відвідують 10 чоловік з хору, а хор – 6 спортсменів, у драмгуртку 8 спортсменів; 3 спортсмени займаються і в драмгуртку, і в хорі. Скільки чоловік не співають у хорі, не захоплюються спортом та не займаються у драмгуртку? Скільки чоловік займається лише одним з цих гуртків?

Показать ответ
Ответ:
Fela06
Fela06
05.03.2022 08:44
Я в алгебре не оч, но насколько я поняла, то это так.
Берем за х  работу 1 бригады.  Так так одна бригада закончила на 10 дней раньше, тобишь х, то вторая бригада строит на 10 дней дольше, тобишь (х+10). по условию задачи всего они строили 12 дней, так что можно решить.
 Можно это записать так:
1-х дней
2(х+10) дней
Всего 12 дней.
Составим и решим уравнение:
х+(х+10)=12
Х+Х=12-10  ( мы расскрываем скобки, перед скобками +, знак не меняется. мы собираем  в левую часть уранения неизвестные, а в правую числу, когда переносим число за скобки, знак меняется на противоположный. + на -, - на +, * на :, : на *.)
2х=2
Х=2:2
Х=1
За один день бы спавилась одна бригада. 
2) 1+10=11(дней) - справилась бы 2 бригада.
Этот вид уравнений называется линейным.
0,0(0 оценок)
Ответ:
rinett
rinett
23.07.2020 06:01
. Исследовать функцию с производной и построить ее график: y = x4 - 4x Для решения задачи используем схему исследования функции и алгоритм нахождения промежутков монотонности и экстремумов функции:   Схема исследования функции для построения графика.   1.     Найти область определения функции. 2.     Найти точки пересечения графика функции с осями координат (если это возможно). 3.     Исследовать функцию на чётность и нечётность. 4.     Найти интервалы монотонности и экстремумы функции. 5.     Отметить «сигнальные» точки в ПСК. 6.     Построить график функции.   Алгоритм нахождения промежутков монотонности и экстремумов функции.   1. Найти производную функции у’ . 2. Найти критические точки, решив уравнение у’ = 0. 3. Область определения функции разбить критическими точками на интервалы. 4. Определить знак производной в каждом интервале (методом проб). 5. Сделать вывод о монотонности функции на интервале: ·        если у’ > 0, то функция на интервале возрастает; ·        если у’ < 0, то функция на интервале убывает; ·        если у’ = 0, то необходимы дополнительные исследования. 6. Сделать вывод о существовании экстремумов: ·        если при переходе через критическую точку производная меняет знак с «+» на «-», то в этой точке функция имеет максимум; ·        если при переходе через критическую точку производная меняет знак с «-» на «+», то в этой точке функция имеет минимум; ·        если при переходе через критическую точку производная не меняет, то в этой точке функция не имеет экстремума. 7. Вычислить значения функции в точках экстремума. Решение. 1.     Функция y = x4 - 32x представляет собой многочлен, следовательно ее область определения – вся числовая прямая. D(y) = (-)/ 2.      Найдем точки пересечения графика с осями координат. ·        С осью OX: y=0  x4 - 4x = 0                                        x (x3 - 4) = 0 x1 = 0,  x 2 = 1,6      точки М1 (0;0),  М2 (1,6; 0) ·        С осью OY: x = 0 . Точка М1 (0;0). 3.     Функция ни четная, ни нечетная (переменная х имеет и четную и нечетную степень в выражении функции), т.е. функция общего вида. Следовательно, график функции не имеет симметрии относительно осей координат и начала системы координат. 4.     Найдем интервалы монотонности и экстремумы функции.      y' = 4x3 – 4,  y’ = 0 4x3 – 4= 0 x = 1– критическая точка.           -           1         +                                                             min              Определим знак производной в каждом интервале:          y’(0) = -4 <0 функция убывает в интервале (-; 1)          y’(2) = 28 >0 функция возрастает в интервале (1; ).                   Вычислим значение функции в точке экстремума:          y(1) = 13 – 4*1 = -3 M3(1;-3) – min. 5.     Отметим найденные точки и построим график функции.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота