Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
y
=
6
x
−
x
2
Переставим
6
x
и
−
x
2
.
y
=
−
x
2
+
6
x
Определим свойства данной параболы.
Нажмите, чтобы увидеть больше шагов...
Направление: направлено вниз
Вершина:
(
3
,
9
)
Фокус:
(
3
,
35
4
)
.
Ось симметрии:
x
=
3
Направляющая:
y
=
37
4
Выберем несколько значений
x
и подставим их в уравнение, чтобы найти соответствующие значения
y
. Значения
x
должны выбираться близко к вершине.
Нажмите, чтобы увидеть больше шагов...
x
y
1
5
2
8
3
9
4
8
5
5
Построим график параболы, используя ее свойства и выбранные точки.
Направление: направлено вниз
Вершина:
(
3
,
9
)
Фокус:
(
3
,
35
4
)
.
Ось симметрии:
x
=
3
Направляющая:
y
=
37
4
x
y
1
5
2
8
3
9
4
8
5
5
Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана.
1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.