а)х²-3х=0; x(x-3) = 0 Произведение равно нулю, если один из множителей (или оба) равен нулю, поэтому наше уравнение распадается на два уравнения (это значит, что его корнями будут корни двух "уменьшонных" уравнений, в которых мы множители приравниваем к нулю): =0 - 3 = 0 = 3 ответ: 0; 3
б)6у(у+1)+у+1=0; (6у+1)(у+1)=0 Аналогично решению записываем два уравнения, приравниваю к нулю множители 6y+1 и y+1: 6y+1=0 y+1=0 6y = -1 y = -1 y = -1/6 ответ: -1; -1/6
в)t³+4+t²+4t=0; (t²+4)+(t³+4t)=0 (t²+4)+t(t²+4)=0 (t²+4)(1+t)=0 Снова разбиваем на два уравнения: t²+4=0 1+t=0 t² = -4 t = -1 Первое уравнение корней не имеет, т.к. квадрат любого числа неотрицателен. Следовательно, ответ: -1
x(x-3) = 0
Произведение равно нулю, если один из множителей (или оба) равен нулю, поэтому наше уравнение распадается на два уравнения (это значит, что его корнями будут корни двух "уменьшонных" уравнений, в которых мы множители приравниваем к нулю):
=0
- 3 = 0
= 3
ответ: 0; 3
б)6у(у+1)+у+1=0;
(6у+1)(у+1)=0
Аналогично решению записываем два уравнения, приравниваю к нулю множители 6y+1 и y+1:
6y+1=0 y+1=0
6y = -1 y = -1
y = -1/6
ответ: -1; -1/6
в)t³+4+t²+4t=0;
(t²+4)+(t³+4t)=0
(t²+4)+t(t²+4)=0
(t²+4)(1+t)=0
Снова разбиваем на два уравнения:
t²+4=0 1+t=0
t² = -4 t = -1
Первое уравнение корней не имеет, т.к. квадрат любого числа неотрицателен. Следовательно,
ответ: -1