Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Объяснение:
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.
-9; 9
x²-8|x|-9=0
8|x|=x²-9
|x|=(x²-9)/8
1) x=(x²-9)/8; (x²-9)/8 -(8x)/8=0; x²-8x-9=0; D=64+36=100
x₁=(8-10)/2=-2/2=-1, проверка: (-1)²-8·|-1|-9=1-8-9=-16; -16≠0 - равенство не выполняется ⇒ корень x₁ не подходит.
x₂=(8+10)/2=18/2=9, проверка: 9²-8·|9|-9=9(9-8-1)=9·0=0; 0=0 - равенство выполняется.
2) x=(9-x²)/8; (9-x²)/8 -(8x)/8=0; (9-x²-8x)/8=0 |×(-1)
x²+8x-9=0; D=64+36=100
x₃=(-8-10)/2=-18/2=-9, проверка: (-9)²-8·|-9|-9=9(9-8-1)=9·0=0; 0=0 - равенство выполняется.
x₄=(-8+10)/2=2/2=1, проверка: 1²-8·|1|-9=1-8-9=-16; -16≠0 - равенство не выполняется ⇒ корень x₄ не подходит.
Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Объяснение:
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.
-9; 9
Объяснение:
x²-8|x|-9=0
8|x|=x²-9
|x|=(x²-9)/8
1) x=(x²-9)/8; (x²-9)/8 -(8x)/8=0; x²-8x-9=0; D=64+36=100
x₁=(8-10)/2=-2/2=-1, проверка: (-1)²-8·|-1|-9=1-8-9=-16; -16≠0 - равенство не выполняется ⇒ корень x₁ не подходит.
x₂=(8+10)/2=18/2=9, проверка: 9²-8·|9|-9=9(9-8-1)=9·0=0; 0=0 - равенство выполняется.
2) x=(9-x²)/8; (9-x²)/8 -(8x)/8=0; (9-x²-8x)/8=0 |×(-1)
x²+8x-9=0; D=64+36=100
x₃=(-8-10)/2=-18/2=-9, проверка: (-9)²-8·|-9|-9=9(9-8-1)=9·0=0; 0=0 - равенство выполняется.
x₄=(-8+10)/2=2/2=1, проверка: 1²-8·|1|-9=1-8-9=-16; -16≠0 - равенство не выполняется ⇒ корень x₄ не подходит.