Пирамида SABCD, ABCD - квадрат в основании, SH - высота, H - точка пересечения диагоналей квадрата. SH1 - высота треугольника SDC. H1 соединим s H. SH1 перпендикулярен DC, HH1 так же перпендикулярен DC, значит <SH1H - линейный угол двугранного угла SDCH, следовательно <SH1H = 60°.
SH перпендикулярен HH1, так как перпендикулярен плоскости основания, следовательно и любой линии, лежащей в этой плоскости. Из прямоугольного треугольника SHH1:
sin<HH1S = SH/SH1
SH1*sin60° = 4√3
SH1*√3/2 = 4√3
SH1 = 8
По теореме пифагора: HH1² = SH1² - SH²
HH1² = 64 - 48 = 16
HH1 = 4
Рассмотрим треугольники CHH1 и CAD. Они подобны (один угол общих, два остальных - соответственные углы при пересечении двух параллельных прямых третьей).
2HC = AC (диагонали квадрата точкой пересечения делятся на две равные части)
Пирамида SABCD, ABCD - квадрат в основании, SH - высота, H - точка пересечения диагоналей квадрата. SH1 - высота треугольника SDC. H1 соединим s H. SH1 перпендикулярен DC, HH1 так же перпендикулярен DC, значит <SH1H - линейный угол двугранного угла SDCH, следовательно <SH1H = 60°.
SH перпендикулярен HH1, так как перпендикулярен плоскости основания, следовательно и любой линии, лежащей в этой плоскости. Из прямоугольного треугольника SHH1:
sin<HH1S = SH/SH1
SH1*sin60° = 4√3
SH1*√3/2 = 4√3
SH1 = 8
По теореме пифагора: HH1² = SH1² - SH²
HH1² = 64 - 48 = 16
HH1 = 4
Рассмотрим треугольники CHH1 и CAD. Они подобны (один угол общих, два остальных - соответственные углы при пересечении двух параллельных прямых третьей).
2HC = AC (диагонали квадрата точкой пересечения делятся на две равные части)
Значит: AC/HC = AD/HH1
2HC/HC = AD/HH1
AD = 2HH1
AD = 2*4 = 8
Sбок = Pосн*h, где h - апофема
Sбок = Pосн*SH1 = (4*8)*8 = 256
Sосн = AD² = 8² = 64
Sполн = Sбок + Sосн = 256 + 64 = 320
ответ: 320
(2sin2βcos2β-2sin2βcos2β)/(cos2β) + 0.29=0+0.29=0.29
2.нужные формулы:sin²x=(1-cos2x)/2 ; cos²x=(1+cos2x)/2
((1-cos(2x/2))-(1+cos(2x/2))/2*√3 все в двойных скобках до /2-числитель дроби,знаменатель 2,вся дробь умножается на √3
=√3(1-cosx-1-cosx)/2=-2√3cosx/2=-√3cosx
-√3*cos5π/6=(-√3)*(-√3)/2=1.5
3.нужная формула:sin²β=1-cos²β
sin²β=1-0.8²=0.36
в указанном промежутке sinβ=-0.6
4.нужная формула:1+tg²x=1/cos²x
1+(24/7)²=1/cos²x
625/9=1/cos²x
cos²x=49/625
в указанном промежутке cosx=-7/25=-0.28
5.нужные формулы:1+сtg²x=1/sin²x sin²x=(1-cos2x)/2
1+(-4/3)²=1/sin²x
sin²x=9/25
9/25=(1-cos2x)/2
18/25=1-cos2x
cos2x=1-18/25=7/25=0.28