В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

Какова вероятность того что среди пяти случайно вытянутых билетов от 1 до 90 имеется по крайней мере, два последовательных числа?

Показать ответ
Ответ:
levutenof
levutenof
10.09.2020 16:20
Пусть событие A -- среди 5 вытянутых билетов из 90 имеется по крайней мере 2 последовательных числа.
Согласно классическому определению вероятности, вероятность события A равна: P(A)=\cfrac{m}{n}, где m - количество благоприятных исходов, n - количество неблагоприятных исходов.
Всего вариантов выбрать 5 билетов из 90: n=C^{5}_{90}=\cfrac{90!}{5!(90-5)!}=43949268.
Благоприятных исходов (выбрать хотя бы 2 последовательно идущих числа из 90) всего будет 89, то есть (1, 2, ...), (2, 3, ...), (3, 4, ...), ..., (89, 90, ...). То есть все пятерки чисел, которые включают в себя пары, начинающиеся с 1, и заканчивающиеся 89, - всего их 89. 
Таким образом, вероятность равна P=\cfrac{89}{C^5_{90}}=\cfrac{89}{43949268}\approx 0.000002=2\cdot10^{-6}.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота