x⁵+8x⁴+24x³+35x²+28x+12=0
Следствие из теоремы Безу гласит: "если многочлен с целыми коэффициентами имеет целый корень, то этот корень является делителем свободного члена".
Тогда корень данного уравнения находится среди делителей числа 12, то есть: ±1; ±2; ±3; ±4; ±6; ±12.
Подставляя значения в уравнения, получим, что x=-2 - корень уравнения.
Составим схему Горнера:
| 1 | 8 | 24 | 35 | 28 | 12 |
————————————
-2 | 1 | 6 | 12 | 11 | 6 | 0 |
Теперь можем разложить на множители исходное уравнение:
(x⁴+6x³+12x²+11x+6)(x+2)=0
Далее действия аналогичные:
Находим корень уравнения x⁴+6x³+12x²+11x+6=0 среди делителей его свободного члена: ±1; ±2; ±3; ±6.
Подставляя значения в уравнение x⁴+6x³+12x²+11x+6=0, получим, что x=-2 - корень уравнения.
Составляем схему Горнера:
| 1 | 6 | 12 | 11 | 6 |
—————————
-2 | 1 | 4 | 4 | 3 | 0 |
Теперь получим такое уравнение:
(x³+4x²+4x+3)(x+2)²=0
Находим корень уравнения x³+4x²+4x+3=0 среди делителей его свободного члена: ±1; ±3.
Подставляя значения в уравнение x³+4x²+4x+3=0, получим, что x=-3 - корень уравнения.
| 1 | 4 | 4 | 3 |
———————
-2 | 1 | 1 | 1 | 0 |
Получим такое уравнение:
(x²+x+1)(x+2)²(x+3)=0
x²+x+1=0 или (x+2)²=0 или x+3=0
∅ x=-2 x=-3
ответ: -3; -2.
Объяснение:
1) х≤3
2) -∞≤ у ≤4
3) у∠0 при х∠-1
0 ∠у при -1 ∠ х ∠ 2 или 2 ∠ х
4) х=-1 для четной должно выполняться у(-1)=у(1)
у(-1)=0 ,а у(1)=2 при четной 0=2(? ) ложно,значит не четная!
для нечетной должно выполняться у(-1)= -у(1) 0=-2(?) ложно! Значит это не четная и не нечетная!
Вторая задача. наибольшее значение син 2х = 1 а наименьшее -1.
2*син 1 -5≈ 2*0,84-5≈ -3,32 (угол в радианах!)
2*син(-1 ) -5≈ -2*0,84-5≈ -6,68 (угол в радианах!)
3 задание. х/3 ≠п к, х≠3пк
период равен 3п
x⁵+8x⁴+24x³+35x²+28x+12=0
Следствие из теоремы Безу гласит: "если многочлен с целыми коэффициентами имеет целый корень, то этот корень является делителем свободного члена".
Тогда корень данного уравнения находится среди делителей числа 12, то есть: ±1; ±2; ±3; ±4; ±6; ±12.
Подставляя значения в уравнения, получим, что x=-2 - корень уравнения.
Составим схему Горнера:
| 1 | 8 | 24 | 35 | 28 | 12 |
————————————
-2 | 1 | 6 | 12 | 11 | 6 | 0 |
Теперь можем разложить на множители исходное уравнение:
(x⁴+6x³+12x²+11x+6)(x+2)=0
Далее действия аналогичные:
Находим корень уравнения x⁴+6x³+12x²+11x+6=0 среди делителей его свободного члена: ±1; ±2; ±3; ±6.
Подставляя значения в уравнение x⁴+6x³+12x²+11x+6=0, получим, что x=-2 - корень уравнения.
Составляем схему Горнера:
| 1 | 6 | 12 | 11 | 6 |
—————————
-2 | 1 | 4 | 4 | 3 | 0 |
Теперь получим такое уравнение:
(x³+4x²+4x+3)(x+2)²=0
Находим корень уравнения x³+4x²+4x+3=0 среди делителей его свободного члена: ±1; ±3.
Подставляя значения в уравнение x³+4x²+4x+3=0, получим, что x=-3 - корень уравнения.
Составляем схему Горнера:
| 1 | 4 | 4 | 3 |
———————
-2 | 1 | 1 | 1 | 0 |
Получим такое уравнение:
(x²+x+1)(x+2)²(x+3)=0
x²+x+1=0 или (x+2)²=0 или x+3=0
∅ x=-2 x=-3
ответ: -3; -2.
Объяснение:
1) х≤3
2) -∞≤ у ≤4
3) у∠0 при х∠-1
0 ∠у при -1 ∠ х ∠ 2 или 2 ∠ х
4) х=-1 для четной должно выполняться у(-1)=у(1)
у(-1)=0 ,а у(1)=2 при четной 0=2(? ) ложно,значит не четная!
для нечетной должно выполняться у(-1)= -у(1) 0=-2(?) ложно! Значит это не четная и не нечетная!
Вторая задача. наибольшее значение син 2х = 1 а наименьшее -1.
2*син 1 -5≈ 2*0,84-5≈ -3,32 (угол в радианах!)
2*син(-1 ) -5≈ -2*0,84-5≈ -6,68 (угол в радианах!)
3 задание. х/3 ≠п к, х≠3пк
период равен 3п