(-бесконечности ; -10] и (7; +бесконечности)
Объяснение:
Запишем все под одной дробью:
Найдём область допустимых значений:
х-7≠0, то есть х ≠ 7
Раскроем скобки и решим:
Рассмотрим все возможные случаи (знаменатель строго больше нуля, так как если он будет равен нулю, выражение потеряет смысл):
1. Когда и знаменатель, и числитель больше 0
2. Когда оба меньше 0
1.
То есть х принадлежит ( 7; +бесконечности)
Так как 7 не удовлетворяет ОДЗ, то скобки круглые
2.
То есть х принадлежит (- бесконечности ; - 10]
Найдём объединение:
Х принадлежит (-бесконечности ; -10] и (7; +бесконечности)
(-бесконечности ; -10] и (7; +бесконечности)
Объяснение:
Запишем все под одной дробью:
Найдём область допустимых значений:
х-7≠0, то есть х ≠ 7
Раскроем скобки и решим:
Рассмотрим все возможные случаи (знаменатель строго больше нуля, так как если он будет равен нулю, выражение потеряет смысл):
1. Когда и знаменатель, и числитель больше 0
2. Когда оба меньше 0
1.
То есть х принадлежит ( 7; +бесконечности)
Так как 7 не удовлетворяет ОДЗ, то скобки круглые
2.
То есть х принадлежит (- бесконечности ; - 10]
Найдём объединение:
Х принадлежит (-бесконечности ; -10] и (7; +бесконечности)
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.