Имеется два сосуда. первый содержит 100 кг, а второй - 50 кг раствора кислоты различной концентрации. если эти растворы смешать, то получится раствор, содержащий 28% кислоты. если же смешать равные массы этих растворов, то получится раствор, содержащий 36% кислоты. сколько килограмм кислоты содержится в первом растворе?
обозначим: p- доля кислоты в первом растворе
q- доля кислоты во втором растворе
100·p-количество кислоты в первом растворе
50·q - количество кислоты во втором растворе
выразим проценты в долях: 28%=(28/100)100%
28/100=7/25 - доля кислоты , после того, как смешали растворы.
150·7/25 количество кислоты после того, как смешали растворы.
Напишем уравнение: 100p+50q=150·7/25
100p+50q=42
2 случай. Возьмем 50 кг из первого раствора и 50 кг второго раствора.
50 кг+50 кг =100 кг, в 100 кг содержится 36% кислоты
365 выразим в долях: 36%=(36/100)·100, 36/100=9/25 -доля кислоты, после того как смешали растворы.
p- доля кислоты в первом растворе, q- доля кислоты во втором растворе.
Напишем уравнение:50p+50q=100·9/25
50p+50q=36
Запишем систему: 100p+50q=42
50p+50q=36 Вычтем из первого уравнения второе,
50p=6
p=6/50=12/100=0,12
Подставим значение p в одно из уравнений:
50·0,12+50q=36
50q=36-6=30
50q=30
q=30/50=3/5=0,6
доля кислоты в первом растворе p=0,12, всего кислоты было 100 кг,
следовательно кислоты в 100 кг раствора содержится 100·0,12=12 кг.