Из тех примеров, что видны. 4) Если у двух равных дробей равны знаменатели, значит у них равны и числители: x^2=16; x=+-V16; x1=4; x2=-4/ 1) При решении дробных уравнений обычно от дробей избавляются. Для этого находят общий знаменатель, дополнительные множители, и умножают числители на дополнительные множители, отбросив при этом знаменатель. x^2/(x-1)=(2-x)/(x-1); x^2=2-x; x^2+x-2=0; решаем через дискриминант, получим x1=1; x2=-2. 2) (4y+3)/(y-7)=-x^2/(y-7); 4y+3=-x^2; x^2+4y+3=0; y1=3; y2=1. 3) Общий знаменатель: (х+10)(х-8). Решение: x*(x-8)=1*(х+10); x^2-8x=x+10; x^2-9x-10=0; x1=10; x2=-1. 4) Общий знаменатель: (3x-1)(27-x). Решение: 1*(27-х) =x*(3x-1); 27-x=3x^2-x; 3x^2=27; x^2=27/3; x^2=9; x=+-V9; x1=3; x2=-3.
Функция возрастает если ее производная больше нуля. а если производная меньше нуля, то функция убывает у'=3x²-2x-1 3x²-2x-1=0 D=4+12=16 x1,2=(2+-4)/6 x1=1 x2=-(1/3) (рисуем параболу на оси X) y'>0 при x∈(-∞;-(1/3)|∪|1;+∞) y'<0 при x∈|-1/3;1| точки экстремума это минимальные и максимальные значения точки в некоторой окрестности. необходимое условие y'=0 при x=-(1/3); x=1 достаточное условие это то, что при переходе через эту точку функция меняет знак. Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум. Будут вопросы спрашивай)
4) Если у двух равных дробей равны знаменатели, значит у них равны и числители: x^2=16; x=+-V16; x1=4; x2=-4/
1) При решении дробных уравнений обычно от дробей избавляются. Для этого находят общий знаменатель, дополнительные множители, и умножают числители на дополнительные множители, отбросив при этом знаменатель.
x^2/(x-1)=(2-x)/(x-1); x^2=2-x; x^2+x-2=0; решаем через дискриминант, получим x1=1; x2=-2.
2) (4y+3)/(y-7)=-x^2/(y-7); 4y+3=-x^2; x^2+4y+3=0; y1=3; y2=1.
3) Общий знаменатель: (х+10)(х-8). Решение: x*(x-8)=1*(х+10); x^2-8x=x+10; x^2-9x-10=0; x1=10; x2=-1.
4) Общий знаменатель: (3x-1)(27-x). Решение: 1*(27-х) =x*(3x-1); 27-x=3x^2-x; 3x^2=27; x^2=27/3; x^2=9; x=+-V9; x1=3; x2=-3.
у'=3x²-2x-1
3x²-2x-1=0
D=4+12=16
x1,2=(2+-4)/6
x1=1
x2=-(1/3)
(рисуем параболу на оси X)
y'>0 при x∈(-∞;-(1/3)|∪|1;+∞)
y'<0 при x∈|-1/3;1|
точки экстремума это минимальные и максимальные значения точки в некоторой окрестности.
необходимое условие y'=0
при x=-(1/3); x=1
достаточное условие это то, что при переходе через эту точку функция меняет знак.
Если подставлять значения x можно заметить,что x=-(1/3) это максимум, а x=1 это минимум.
Будут вопросы спрашивай)