В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ива357
ива357
01.10.2022 04:10 •  Алгебра

Химия 1бжб 1токсан 9сынып ответы у кого есть?

Показать ответ
Ответ:
den2424denoztwre
den2424denoztwre
23.12.2020 06:16

1. Функция задана формулой у = 6х + 19. Определите:

а) значение у, если х = 0,5;

б) значение х, при котором у = 1;

в) проходит ли график функции через точку А (–2; 7).

2. а) Постройте график функции у = 2х – 4.

б) Укажите с графика, чему равно значение у при х = 1,5.

3. В одной и той же системе координат постройте графики функций:

а) у = –2х; б) у = 3.

4. Найдите координаты точки пересечения графиков функций

у = 47х – 37 и у = –13х + 23.

5. Задайте формулой линейную функцию, график которой параллелен прямой у = 3х – 7 и проходит через начало координат.

Вариант 2

1. Функция задана формулой у = 4х – 30. Определите:

а) значение у, если х = –2,5;

б) значение х, при котором у = –6;

в) проходит ли график функции через точку В (7; –3).

2. а) Постройте график функции у = –3х + 3.

б) Укажите с графика, при каком значении х значение у равно 6.

3. В одной и той же системе координат постройте графики функций:

а) у = 0,5х; б) у = –4.

4. Найдите координаты точки пересечения графиков функций

у = –38х + 15 и у = –21х – 36.

5. Задайте формулой линейную функцию, график которой параллелен прямой у = –5х + 8 и проходит через начало координат.

Вариант 3

1. Функция задана формулой у = 5х + 18. Определите:

а) значение у, если х = 0,4;

б) значение х, при котором у = 3;

в) проходит ли график функции через точку С (–6; –12).

2. а) Постройте график функции у = 2х + 4.

б) Укажите с графика, чему равно значение у при х = –1,5.

3. В одной и той же системе координат постройте графики функций:

а) у = –0,5х; б) у = 5.

4. Найдите координаты точки пересечения графиков функций

у = –14х + 32 и у = 26х – 8.

5. Задайте формулой линейную функцию, график которой параллелен прямой у = 2х + 9 и проходит через начало координат.

Вариант 4

1. Функция задана формулой у = 2х – 15. Определите:

а) значение у, если х = –3,5;

б) значение х, при котором у = –5;

в) проходит ли график функции через точку K (10; –5).

2. а) Постройте график функции у = –3х – 3.

б) Укажите с графика, при каком значении х значение у равно –6.

3. В одной и той же системе координат постройте график функций:

а) у = 2х; б) у = –4.

4. Найдите координаты точки пересечения графиков функций

у = –10х – 9 и у = –24х + 19.

5. Задайте формулой линейную функцию, график которой параллелен прямой у = –8х + 11 и проходит через начало координат.

Объяснение:

0,0(0 оценок)
Ответ:
ivan497
ivan497
19.01.2022 16:38

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота