Для начала делим все произведение на COSx, при этом найдя ОДЗ для косинуса (Не равно нулю!). ОДЗ будет х не равно пи/2+пи*n, n принадлежит Z. Получим 4 + 3tg x - 10 tg^2(x) = 0 умножаем на (-1) 10tg^2 (x) - 3tgx - 4=0. Заменяем tg x = t. и решаем квадратное уравнение относительно t. 10t^2 - 3t - 4 = 0 t1 = (3-13)\ 20 = - 0.5 t2 = 0.8 подставляем полученные значения вместо tgx=t tgx= - 0.5 x = arctg (-0.5) + Пи*n, n принадлежит Z x = - arctg 0.5 = ПИ*n? n принадлежит Z tg x = 0.8 x = arctg 0.8 + Пи*n, n принадлежит Z
Получим 4 + 3tg x - 10 tg^2(x) = 0 умножаем на (-1)
10tg^2 (x) - 3tgx - 4=0. Заменяем tg x = t. и решаем квадратное уравнение относительно t.
10t^2 - 3t - 4 = 0
t1 = (3-13)\ 20 = - 0.5
t2 = 0.8
подставляем полученные значения вместо tgx=t
tgx= - 0.5
x = arctg (-0.5) + Пи*n, n принадлежит Z
x = - arctg 0.5 = ПИ*n? n принадлежит Z
tg x = 0.8
x = arctg 0.8 + Пи*n, n принадлежит Z
1) Т.к. это квадратичная функция, представленная параболой, найдем вершину параболы по следующей формуле:
Подставляем единичку в функцию:
2*1-4*1+1=2-4+1=2-3=-1.
Ниже график функции не будет подыматься, следовательно, множество значений:
y∈{-1...+∞}.
2)
Несмотря ни на что, под корнем НИКОГДА не должно быть отрицательное значение. Решаем 2 полноценных систем уравнения:
Но, -3<5 ⇒x≥5.
D(f)=x≥5
3) Вы, наверно, имели ввиду сумму корней.
Проведем замену переменной:
Решаем квадратное уравнение:
А теперь, решаем два уравнения:
Но, нежелательно в уравнение вставлять комплексные числа, т.е. второй вариант просто убираем. Получим единственный корень - √3.