Геометриялық прогрессияның алғашқы үш мүшесінің көбейтіндісі 1728-ге, ал олардың қосындысы 63-ке тең. Прогрессияның бірінші мүшесі мен еселігін табыңыз.
1) x^2*x^m - икс в квадрате умноженное на икс в m степени = х^(2+m) - икс в степени 2 + m 2) x^m * x - икс в степени m умноженное на икс = х^(m+1) - икс в cтепени m + 1 3) (x^2) в n степени - (икс в квадрате) в n степени = x^(2*n) - икс в степени 2n 4) (x^n)^3 - (икс в n степени) в кубе = х^(n*3) - икс в степени 3n 5) (x^3) в n степени - (икс в кубе) в n степени = х^(3*n) - икс в степени 3n 6) (x^7 : x^3) в n степени - (икс в 7 степени делённое на икс в кубе) в степени n = (х^4) в степени n = х^(4*n) - икс в степени 4n
График функции y= -2x² - 4x + m это парабола ветвями вниз (коэффициент при x² отрицателен). Граничное значение квадратичной функции в виде у = ах² + вх + с, при котором вершина параболы находится на оси Х, равно 0, дискриминант Д при этом равен 0. Координата вершины параболы Уо = -Д / 4а. В данной задаче дискриминант Д = в² - 4аm. Отсюда при Д = 0: m = в² / 4а = (-4)² / 4*(-2) = 16 / -8 = -2. Чтобы график функции y= -2x² - 4x + m НЕ ИМЕЕЛ общих точек с осью абсцисс, вершина параболы должна располагаться ниже оси Х. При этом коэффициент m - это координата точки пересечения графика оси У при Х = 0. Поэтому значение m должно быть меньше -2. ответ: m < -2.
2) x^m * x - икс в степени m умноженное на икс = х^(m+1) - икс в cтепени m + 1
3) (x^2) в n степени - (икс в квадрате) в n степени = x^(2*n) - икс в степени 2n
4) (x^n)^3 - (икс в n степени) в кубе = х^(n*3) - икс в степени 3n
5) (x^3) в n степени - (икс в кубе) в n степени = х^(3*n) - икс в степени 3n
6) (x^7 : x^3) в n степени - (икс в 7 степени делённое на икс в кубе) в степени n = (х^4) в степени n = х^(4*n) - икс в степени 4n
Граничное значение квадратичной функции в виде у = ах² + вх + с, при котором вершина параболы находится на оси Х, равно 0, дискриминант Д при этом равен 0.
Координата вершины параболы Уо = -Д / 4а.
В данной задаче дискриминант Д = в² - 4аm. Отсюда при Д = 0: m = в² / 4а = (-4)² / 4*(-2) = 16 / -8 = -2.
Чтобы график функции y= -2x² - 4x + m НЕ ИМЕЕЛ общих точек с осью абсцисс, вершина параболы должна располагаться ниже оси Х.
При этом коэффициент m - это координата точки пересечения графика оси У при Х = 0.
Поэтому значение m должно быть меньше -2.
ответ: m < -2.