Объяснение:
1. a₁=-2 a₁₀=16 a₁₂=?
a₁₀=a₁+(10-1)*d=16
-2+9*d=16
9*d=18 |÷9
d=2 ⇒
a₁₂=a₁+(12-1)*d=-2+11*2=-2+22=20
ответ: а₁₂=20.
2. a₇=43 a₁₅=3 a₁₂=?
{a₇=a₁+6d=43
{a₁₅=a₁+14d=3
Вычитаем из нижнего уравнения верхнее:
8d=-40 |÷8
d=-5 ⇒
a₁+6*(-5)=43
a₁-30=43
a₁=73
a₁₂=73+11*(-5)=73-55=18
ответ: a₁₂=18.
3. a₁=30 d=-0,4 a₁₂=?
a₁₂=30+11*(-0,4)=30-4,4=25,6
ответ: a₁₂=25,6.
4. a₁₀=9,5 S₁₀=50 a₁₂=?
Sn=(a₁+an)*n/2
(a₁+9,5)*10/2=50
(a₁+9,5)*5=50 |÷5
a₁+9,5=10
a₁=0,5
a₁₀=a₁+9d=9,5
0,5+9d=9,5
9d=9 |÷9
d=1 ⇒
a₁₂=a₁+11d=0,5+11*1=0,5+11=11,5.
ответ: а₁₂=11,5.
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай
Объяснение:
1. a₁=-2 a₁₀=16 a₁₂=?
a₁₀=a₁+(10-1)*d=16
-2+9*d=16
9*d=18 |÷9
d=2 ⇒
a₁₂=a₁+(12-1)*d=-2+11*2=-2+22=20
ответ: а₁₂=20.
2. a₇=43 a₁₅=3 a₁₂=?
{a₇=a₁+6d=43
{a₁₅=a₁+14d=3
Вычитаем из нижнего уравнения верхнее:
8d=-40 |÷8
d=-5 ⇒
a₁+6*(-5)=43
a₁-30=43
a₁=73
a₁₂=73+11*(-5)=73-55=18
ответ: a₁₂=18.
3. a₁=30 d=-0,4 a₁₂=?
a₁₂=30+11*(-0,4)=30-4,4=25,6
ответ: a₁₂=25,6.
4. a₁₀=9,5 S₁₀=50 a₁₂=?
Sn=(a₁+an)*n/2
(a₁+9,5)*10/2=50
(a₁+9,5)*5=50 |÷5
a₁+9,5=10
a₁=0,5
a₁₀=a₁+9d=9,5
0,5+9d=9,5
9d=9 |÷9
d=1 ⇒
a₁₂=a₁+11d=0,5+11*1=0,5+11=11,5.
ответ: а₁₂=11,5.
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай