Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) Смотрим: какие из них попали в указанный промежуток.
4) Ищем значения данной функции в этих точках и на концах данного промежутка.
5) пишем ответ
Начали?
1) у'= 3x² -18x +24
2) 3x² - 18x + 24 -0
x² - 6x +8 = 0
По т. Виета х = 2 и 4
3) в наш промежуток попало число 2
4) х = 2
у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19
х = -1
у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35
х = 3
у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17
5) max y = 19
[-1; 3]
да
Объяснение:
Пусть числитель равен х, тогда знаменатель (х +1). Исходная дробь будет выглядеть как х / (х + 1). Измененная дробь — х / (х + 3).
Разность дробей составляет 1/4. Получаем уравнение:
х / (х + 1) - х / (х + 3) = 1 / 4;
4 * х * (х + 3) - 4 * х * (х + 1) = (х +1) * (х + 3);
4 * х² + 12 * x - 4 * x² - 4 x = x² + 4 * x + 3;
x² - 4 * x +3 = 0;
D = 16 - 4 * 1 * 3 = 16 - 12 = 4;
х1 = (4 - 2) / 2 = 1;
х2 = (4 + 2) / 2 = 3.
Задача имеет два решения:
1) х1 = 1; y1 = x1 + 1 = 2.
Первая дробь, удовлетворяющая условиям — 1/2.
Проверка:
1/2 - 1/4 = 1/4.
2) х2 = 3; y2 = x2 + 1 = 4.
Вторая дробь, удовлетворяющая условиям — 3/4.
Проверка:
3/4 - 3/6 = 1/4.