Число 59 по условию это число равно: 5х+4=6у+5 5х-6у=5-4 5х-6у=1 5х=6у+1 5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6 Подбираем числа делящиеся на 5: 15=14+1, не подходит, т. к.14 не делится на 6 25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно. 30=29+1 - нет 35=34+1 - нет 40= 39+1- нет 45= 44+1 - нет 50= 49+1 - нет 55=54+1 - да. Тогда задуманное число 55+4=59. 59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
Примем планируемую скорость лыжника за х км/час.
Скорость с которой ехал лыжник реально, будет равна (х + 2) км/час.
Находим время, которое планировалось потратить лыжнику на путь, 15/х ( час)
Находим время, которое потратил лыжник на путь, 15/х+2 (час).
Переводим минуты в часы: 15 мин = 1/4 час.
Составляем уравнение:
15/х - 15/х+2 = 1/4, решаем;
Приводим к общему знаменателю, ищем дополнительные множители, умножаем на них, получаем:
60х + 120 - 60х =х(х+2),
получили квадратное уравнение, находим его корни. Для решения задачи подходит только положительный корень,
х = 10 (км/час) - с такой скоростью планировал ехать лыжник.
10 + 2 = 12 (км/час) - с такой скоростью ехал лыжник.
ответ: 12 км/час скорость лыжника.
Проверка: 15/10 - 15/12 = 1/4 (час).
по условию это число равно:
5х+4=6у+5
5х-6у=5-4
5х-6у=1
5х=6у+1
5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6
Подбираем числа делящиеся на 5:
15=14+1, не подходит, т. к.14 не делится на 6
25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно.
30=29+1 - нет
35=34+1 - нет
40= 39+1- нет
45= 44+1 - нет
50= 49+1 - нет
55=54+1 - да.
Тогда задуманное число 55+4=59.
59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.