Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
Метод алгебраического сложения заключается в том, чтобы вычитая или же суммируя уравнения системы получить 1 уравнение с 1 неизвестным. Для этого в данном примере можно умножить первое уравнение на 3 с обеих сторон (заметим, что при этом значения неизвестных не изменятся, то есть полученное уравнение будет эквивалентно исходному). После этой операции система будет иметь такой вид:
Теперь, если отнимем от первого уравнения системы второе, то получим следующее:
Как видите, мы получили уравнение с 1 неизвестным. Отсюда получаем , а х находим, подставив y в любое из уравнений системы. Удобнее в 1ое в данном случае. Получаем x + 4 * 5 = 9, откуда x = -11. ответ: x = -11; y = 5.
1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже.
2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее.
3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее
4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже
ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
Метод алгебраического сложения заключается в том, чтобы вычитая или же суммируя уравнения системы получить 1 уравнение с 1 неизвестным.
Для этого в данном примере можно умножить первое уравнение на 3 с обеих сторон (заметим, что при этом значения неизвестных не изменятся, то есть полученное уравнение будет эквивалентно исходному). После этой операции система будет иметь такой вид:
Теперь, если отнимем от первого уравнения системы второе, то получим следующее:
Как видите, мы получили уравнение с 1 неизвестным. Отсюда получаем
, а х находим, подставив y в любое из уравнений системы. Удобнее в 1ое в данном случае. Получаем x + 4 * 5 = 9, откуда x = -11.
ответ: x = -11; y = 5.