Два мастера, работая вместе, могут выполнить работу за 6 дней. за сколько дней может выполнить эту работу каждый мастер, работая отдельно, если первый мастер может выполнить всю работу на 9 дней быстрее, чем второй?
пусть первый мастер, работая отдельно, закончит работу за x дней
Примем всю работу за 1.
1) 1 : 6 = 1/6 (р/ч) - общая скорость.
Пусть х дней выполняет работу первый рабочий.
Тогда х+9 дней выполняет работу второй рабочий.
1:х р/ч - скорость первого рабочего,
1:(х+9) р/ч - скорость второго рабочего.
Т.к. по условию задачи общая скорость равна 1/6, составим и решим уравнение.
1:х + 1:(х+9) = 1/6
10:(х+9)=1/6
х+9=10 : 1/6
х+9=60
х=51
1)51+9=60(дн.)