Дві сторони трикутника дорівнюють 2,7 см і 4,2 см. Якому цілому числу сантиметрів НЕ може дорівнювати третя сторона трикутника?
А) 2 см; Б) 4 см; В) 6 см; Г) 8 см.
7 . Один з гострих кутів прямокутного трикутника на 30° менший від другого, а гіпотенуза трикутника дорівнює 8 см. Знайдіть менший з його катетів.
А) 2 см; Б) 4 см; В) 5 см; Г) 6 см.
8. У трикутнику два кути дорівнюють 60° і 50°. Знайдіть кут між прямими, що містять бісектриси цих кутів.
А) 125°; Б) 115° ; В) 65°; Г) 55°.
9. Периметр трикутника дорівнює 16 см. Якою НЕ може бути довжина однієї з його сторін?
А) 8 см; Б) 7,5 см; В) 7 см; Г) 2 см.
|10. Бісектриса кута при основі рівнобедреного трикутника
дорівнює основі цього трикутника. Знайдіть кут при основі
цього трикутника.
А) 60°; Б) 72°; В) 84°; Г) 96°.
11. Зовнішні кути трикутника відносяться як 3 : 5 : 7. Знайдіть менший з внутрішніх кутів трикутника.
А) 12°; Б) 24°; В) 60°; Г) інша відповідь
12. У прямокутному трикутнику один з кутів дорівнює 60°, а сума меншого катета і медіани, проведеної до гіпотенузи,дорівнює 10 см. Знайдіть гіпотенузу трикутника.
А) 6 см; Б) 8 см; В) 10 см; Г) 15 см.
III. Формулювання мети і завдань уроку
Формулюємо проблему: як знайти значення виразу
.
де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0
та знайдіть суму і добуток його коренів.
2. Наведіть приклад квадратного рівняння, в якого:
а) один корінь дорівнює нулю, а другий — не дорівнює нулю;
б) обидва корені дорівнюють нулю;
в) немає дійсних коренів;
г) корені — протилежні ірраціональні числа.
3. Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай