Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
x2 - 13x + 22 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-13)2 - 4·1·22 = 169 - 88 = 81Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 13 - √81 2·1 = 13 - 9 2 = 4 2 = 2x2 = 13 + √81 2·1 = 13 + 9 2 = 22 2 = 11
5x2 + 8x - 4 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 82 - 4·5·(-4) = 64 + 80 = 144Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = -8 - √144 2·5 = -8 - 12 10 = -20 10 = -2x2 = -8 + √144 2·5 = -8 + 12 10 = 4 10 = 0.4
(х-4)^ 2=0x^2 - 8x + 16 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-8)2 - 4·1·16 = 64 - 64 = 0Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:x = 8 2·1 = 4
x2 + 2x + 3 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 22 - 4·1·3 = 4 - 12 = -8Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
(х-8)(х+3)=0x^2 -5x -24=0x2 - 5x - 24 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-5)2 - 4·1·(-24) = 25 + 96 = 121Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 5 - √121 2·1 = 5 - 11 2 = -6 2 = -3x2 = 5 + √121 2·1 = 5 + 11 2 = 16 2 = 8