В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
avangardstroic
avangardstroic
11.01.2023 20:35 •  Алгебра

Докажите что уравнение (х-a)(х-b)+(x-a)(x-c)+(x-b)(x-c)=0 имеет решение при любых действительных значениях а,b,c

Показать ответ
Ответ:
Geniud
Geniud
05.10.2020 06:47
Если среди a, b,c есть одинаковые, то ответ очевиден (если, скажем, a=b, то выражение обращается в ноль при x=a=b). Пусть они все разные. Обозначив функцию, стоящую в левой части уравнения, через f(x), сосчитаем
f(a)=(a-b)(a-c); f(b)=(b-a)(b-c); f(c)=(c-a)(c-b). Тогда
f(a)·f(b)·f(c)= -(a-b)^2(b-a)^2 (c-a)^2<0 ⇒ или все три перемножаемых числа отрицательны, или одно из них. Во Всяком случае, в какой-то точке наша функция отрицательна. А поскольку исследуемая функция квадратичная с положительным старшим коэффициентом, ее график - парабола с ветвями, смотрящими вверх, обязательно пересечется с осью OX.
0,0(0 оценок)
Ответ:
xXDeXTeRXx
xXDeXTeRXx
05.10.2020 06:47
(х-а)(х-b)+(x-a)(x-c)+(x-b)(x-c)=0
x^2-bx-ax+ab+x^2-cx-ax+ac+x^2-bx-cx+bc=0
3x^2-2bx-2ax-2cx+ab+ac+bc=0
и попробуй подставить вместо а, b и c числа, реши и докажешь
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота