Для решения можно использовать один из известных Нахождение корней квадратного трехчлена по формуле.1. Найти значение дискриминанта по формуле D =b2-4*a*c.2. В зависимости от значения дискриминанта вычислить корни по формулам:Если D > 0, то квадратный трехчлен имеет два корня. x = -b±√D / 2*a Если D < 0, то квадратный трехчлен имеет один корень. x= -b / 2*aЕсли дискриминант отрицателен, то квадратный трехчлен не имеет корней Нахождение корней квадратного трехчлена выделением полного квадрата. Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение, уравнение у которого на старший коэффициент равен единице.Найдем корни квадратного трехчлена x2+2*x-3. Для этого решим следующее квадратное уравнение: x2+2*x-3=0; Преобразуем это уравнение:x2+2*x=3;В левой части уравнения стоит многочлен x2+2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:(x2+2*x+1) -1=3То, что в скобках можно представить в виде квадрата двучлена(x+1)2 -1=3;(x+1)2 = 4;Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.В первом случае получаем ответ х=1, а во втором, х=-3.ответ: х=1, х=-3.В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.
Дано:
1 катет = х см
2 катет = (х+1) см
гипотенуза = 29 см
Теорема Пифагора: В прямоугольном треугольнике, квадрат гипотенузы равен сумме квадратов катетов c²=a²+b²
29²=x²+(x+1)²
x²+x²+2x+1=841
2x²+2x-840=0 | 2
x²+x-420=0
D=1²-4*1*(-420)
D=1681 √1681=41
x₁=(-1+41)/2=20
x₂=(-1-41)/2=-21 - сторонний корень, не соответствует условию
Получено 2 значения х, из них соответсвует условию только положительное значение х=20, потому, что длина не может быть отрицательным числом.
х=20 см
х+1=21 см
Проверка: 29²=20²+21²
841=400+441
841=841