В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Privetcsfvxs
Privetcsfvxs
20.05.2022 01:21 •  Алгебра

Докажите, что множество натуральных степеней числа 3 замкнуто относительно умножения и не замкнуто относительно сложения.

Показать ответ
Ответ:
ALBERTALBERT2004
ALBERTALBERT2004
24.06.2020 17:51
Чтобы доказать, что множество натуральных степеней числа 3 не замкнуто относительно сложения, достаточно привести хотя бы один пример подтверждающий это:
3^1+3^2=3+9=12 \neq 3^k,k\in Z

Доказательство того, что множество натуральных степеней числа 3 замкнуто относительно умножения, необходимо проводить в общем виде:
3^a\cdot3^b=3^{a+b}
0,0(0 оценок)
Ответ:
Ruda05
Ruda05
24.06.2020 17:51
Предположим что оно замкнуто относительно сложения получим, что 3^2+3^3=9+27=35 не равно не какой степени 3
Предположим что замкнуто относительно умножения 3^a+3^b=3^a+b
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота