1) sin^4x-cos^4x= (sin^2x-cos^2x)(sin^2x+cos^2x)= (sin^2x-cos^2x)*1= sin^2x-cos^2x
2) (1/(1+cosL))-(1/(1-sinL))= (1-sinL-1-cosL)/((1-sinL)(1+cosL))= -(sinL+cosL)/((1-sinL)(1+cosL))
1) sin^4x-cos^4x= (sin^2x-cos^2x)(sin^2x+cos^2x)= (sin^2x-cos^2x)*1= sin^2x-cos^2x
2) (1/(1+cosL))-(1/(1-sinL))= (1-sinL-1-cosL)/((1-sinL)(1+cosL))= -(sinL+cosL)/((1-sinL)(1+cosL))