Из левой части получим правую для чего домножим числитель и знаменатель левой части на сумму (sinα+cosα)
((sinα+cosα)²)/((cosα-sinα)(sinα+cosα)) Числитель разложим по формуле
(а+в)²=а²+2ав+в², а знаменатель по формуле (а-в)*(а+в)=а²- в², и почленно разделим числитель на знаменатель, предварительно применив формулу косинуса двойного аргумента cos²α-sin²α=cos2α; синуса двойного аргумента 2sinα*cosα= sin2α и основное тригонометрическое тождество sinα²+cos²α=1.
cos (2a) = cos² (a) - sin² (a)
tg (a) = sin (a) / cos(a)
sin (2a) = 2sin(a)cos(a)
sin² a + cos² a = 1
tg (2a) + 1/cos(2a) = sin(2a) / cos(2a) + (sin²(a) + cos²(a))/cos(2a) =
= (sin²(a) + 2sin(a)cos(a) + cos²(a)) / (cos²(a) - sin²(a)) = (sin(a) + cos(a))²/(cos(a)-sin(a))(cos(a)+sin(a)) = (sin(a) + cos(a))/(cos(a) - sin(a)) доказали
Из левой части получим правую для чего домножим числитель и знаменатель левой части на сумму (sinα+cosα)
((sinα+cosα)²)/((cosα-sinα)(sinα+cosα)) Числитель разложим по формуле
(а+в)²=а²+2ав+в², а знаменатель по формуле (а-в)*(а+в)=а²- в², и почленно разделим числитель на знаменатель, предварительно применив формулу косинуса двойного аргумента cos²α-sin²α=cos2α; синуса двойного аргумента 2sinα*cosα= sin2α и основное тригонометрическое тождество sinα²+cos²α=1.
(sinα²+2sinα*cosα+cos²α)/(cos²α-sin²α)=(1+sin2α)/(cos2α)=
1/cos2α+(sin2α)/(cos2α)=tg2α+(1/cos2α) , что и требовалось доказать.