Для завершення формування експедиції в Антарктиду додатково розглядалися заяви 10 претендентів на посаду лікаря, 5 претендентів
на посаду повара і 3 претенденти на посаду техніка. Жоден кандидат
не претендував одночасно на дві чи більше посад. Скількома можна заповнити одне вільне місце в експедиції?
1) х + у = 3 |*2 2х + 2у = 6
3х -2у = -1 3х - 2у = -1 Сложим почленно: 5х = 5,⇒ х = 1
Теперь х =1 подставим в любое уравнение, например, в первое:
х + у = 3
1 + у = 3
у = 2
ответ:(1;2)
2) 7х +4у = 23 |*5 35x +20y = 115
8х +10 у = 19|*(-2) -16х -20у = -38 сложим почленно, получим:
19 у = 77 , ⇒ у= 77/19
Теперь у = 77/19 подставим в любое уравнение, например, в первое:
7х + 4у = 23
7х + 4*77/19 = 23
7х = 23 - 308/19=129/19
х = 129/133
ответ(129/133; 77/19)
Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.