Для написания контрольной работы 36 школьников посадили за круглый стол. Каждый из них произнёс две фразы:
• Мой сосед слева за контрольную получит пятёрку.
• Мой сосед справа за контрольную не получит пятёрку.
После оглашения результатов контрольной выяснилось, что пятёрки получили
только школьники, сказавшие ровно одно верное утверждение.
Какое наименьшее количество пятёрок могли поставить за контрольную?
h(t) = 30t − 6t²
Даже ничего не зная, можно в уме подставить значения t, в эту функцию...
h(0) = 30 • 0 − 6 • 0 = 0 — вначале высота нулевая
h(1) = 30 • 1 − 6 • 1 = 24 — через 1 секунду. высота = 24 метров
h(2) = 30 • 2 − 6 • 4 = 36 — через 2 секунды будет 36 метров
h(3) = 30 • 3 − 6 • 9 = 36 — оппа. Значит где-то между 2-й и 3-й секундой мячик дошел до максимальной высоты и начал снова падать.
h(4) = 30 • 4 − 6 • 16 = 24
h(5) = 30•5 − 6•25 = 0 — оппа. Ничего не зная можно было выяснить, что мяч упадет на землю через 5 секунд!)
А максимум функции можно найти, если решить уравнение "производная функции" = 0
h'(t)= 30 - 12t
30 - 12t = 0
12t = 30
t = 5 / 2 = 2.5
Т. е. максимума достигает через 2.5 секунды.
h(2.5)= 30 • 2.5 - 6 • 6.25 = 37.5
Максимальная высота: 37.5 метров;
Упадет на землю спустя 5 секунд после удара
Объяснение:
"2% помидоров весит 1 килограмм, а значит 20% весят 10 килограмм."
"100% = 50 кг."
2% = 100% (общий вес) - 98% (новый вес влажности, 99% - 1%, снижение на 1%) весит 1 кг
2% * 50 = 1кг * 50
[если влажность снизилась на 20%, то есть на пятую часть, то по данной логике:]
20% = 100% (общий вес) - 79% (новый вес влажности, 99% - 20%, снижение на 20%) весит 1 кг
20% * 5 = 1кг * 5
(или по пропорции 1кг =20%, x кг = 100%: 1кг * 100% /20 % = 5 кг)
И таким образом, новый вес помидор - это 5 кг
При этом, в изначальном весе влажность составляла 99%, или 99кг.
И потеря 20% влажности привела к потере 94кг, или 94,95% изначального веса влаги (94кг*100%/99кг).
Потеряв 20% влажности по логике, описанной в решении, каким-то образом произошла потеря 94,95% влажности
Но 20% потерянной влажности не равно 94.95% потерянной влажности
При этом, если исходить из логики описанного решения, разве не утверждается именно это?
Потому что 20% потерянной влажности равно 20% потерянной влажности =)
Или 20% от 99кг = 19,8кг
И тогда 99кг (влажности) - 19,8кг (20% влажности) = 79,2кг (оставшейся влажности)
1кг (неизменившийся вес "мякоти") + 79,2кг = 80,2кг общего веса (при потере 20% влажности)
а не 5кг
То же самое можно сказать и про числа, приведенные в посте:
1кг - мякоть
49кг - новый вес влаги
99кг - 49кг = 50 кг - потерянный вес влаги
50 кг потерянного веса влаги - это 50,50% от 99кг изначального веса влаги
И 1% потерянной влажности не равно 50,50% потерянной влажности
Если не очевидна 1/5 часть, то можно взять 1/2 часть, половину влажности и тогда по логике, описанной в статье вес составит
50,5% = 100% (общий вес) - 49,5% (99/2, новый вес влажности, снижение на 50%, в два раза) = 1 кг
Значит общий вес составит
(по пропорции 1кг = 50,5%, x кг = 100%: 1кг * 100% /50,5 % = 1,98 кг)
1,98 кг.
Зафиксируем
Было 100кг, 99% влажности, весившей 99кг. Влажность уменьшилась вдвое. Ее стало в два раза меньше.
И теперь какой будет общий вес?
1,98 кг?
или
1 кг + (99 кг - (99кг / 2)) = 1 + (99кг [старый вес влажности] - 49,5кг [вес, на который уменьшается влажность]) = 1 + 49,5 = 50,5 кг
(можно было так же не делить вес влажности на 2, а умножить на 0.5 - то есть посчитать 50% от этого веса)
Итого: 2 кг или 50,5 кг?
Превратится из 100кг в 2кг, потеряв 50% влажности, составляющей до этого почти 100% общего веса?
Или в 50,5 кг?
И так же в 99,01 кг при 98% влажности?
То есть:
1кг + (99кг - 99кг*0.01) = 99,01кг
[отнимаем 1% потерявшегося веса влажности]