В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
tttyadoyan235
tttyadoyan235
11.07.2021 03:38 •  Алгебра

Для любых действительных чисел a, b, c докажите, что: а) если а + b ≥ 0, то a³ + b³ ≥ a²b + ab² б) если ab > 0, то в) если a > 0, b > 0, c > 0, то

Показать ответ
Ответ:
АружанкаЛав
АружанкаЛав
09.10.2020 00:10

если число больше 0, и оно есть в обеих сторонах неравенства, то мы можем на него сократить без изменения знака

1. a+b>=0

a^3+b^3 >= a^b + ab^2

(a+b)(a^2-ab+b^2) >= ab(a+b)   сокращаем на a+b при a+b = 0 это неравенство превращается в равенсто

a^2-ab+b^2 >= ab

a^2-2ab+b^2>=0

(a-b)^2>=0 квадрат всегда больше равен 0

2. ab>0

a/b + b/a >=2

a/b + b/a - 2 >=0

(a^2+b^2 - 2ab)/ab >=0

(a-b)^2/ab >= 0

ab>0 (a-b)^2>=0 первое по условию , второе по определению квадрата

3. ab/c + ac/b + bc/a >= a+b+c при a b c >0

(a^2b^2/abc + a^2c^2/abc + b^2c^2)/abc - abc(a+b+c)/abc >=0

знаменатель отбросим он всегда больше 0 a*b*c>0

2(a^2b^2 + a^2c^2 + b^2c^2 - a^2bc - b^2ac - c^2ab)/2 >=0

умножаем на 2 числитель и знаменатель

(a^2b^2 + a^2c^2 - 2a^2bc + a^2b^2 + b^2c^2 - 2b^2ac + a^2c^2+b^2c^2 - 2c^2ab)/2 >=0

(a^2(b^2-2bc+c^2) + b^2(a^2-2ac+c^2) + c^2(a^2-2ab+b^2))/2 >=0

(a^2(b-c)^2 + b^2(a-c)^2 + c^2(a-b)^2)/2 >=0

слева сумма квадратов деленное на положительное число, всегда больше равно 0

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота